
 

1 
 

Proteome mapping of a cyanobacterium reveals distinct compartment 1 

organisation and cell-dispersed metabolism  2 

Laura L. Baers1, Lisa M. Breckels1,2, Lauren A. Mills3, Laurent Gatto1,2, Michael J. 3 

Deery1, Tim J. Stevens4, Christopher J. Howe1*, Kathryn S. Lilley1*, David J. Lea-4 

Smith1,3* 5 

1 Department of Biochemistry, University of Cambridge, CB2 1QW, United Kingdom 6 

2 Computational Proteomics Unit, Cambridge Centre for Proteomics, University of 7 

Cambridge, CB2 1QW, United Kingdom 8 

3 School of Biological Sciences, University of East Anglia, Norwich Research Park, 9 

Norwich, NR4 7TJ, United Kingdom 10 

4 MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom 11 

 12 

*Corresponding author emails: ch26@cam.ac.uk, k.s.lilley@bioc.cam.ac.uk, D.Lea-13 

Smith@uea.ac.uk 14 

Short title: Mapping the proteome of a cyanobacterium 15 

One sentence summary: The most extensive proteome map of an entire 16 

cyanobacterial cell demonstrates that thylakoid and plasma membrane proteins have 17 

distinct functions and that metabolic pathways are dispersed throughout the cell. 18 

 19 

L.L.B., C.J.H., K.S.L., D.J.L-S. conceived the original screening and research plans; 20 

C.J.H., K.S.L., D.J.L-S. supervised the experiments; L.L.B. performed most of the 21 

experiments; L.M.B, L.G., M.J.D., T.J.S., L.A.M. performed bioinformatics analysis; 22 

L.L.B., C.J.H., K.S.L., D.J.L-S. designed the experiments and analyzed the data; 23 

L.L.B., C.J.H., K.S.L., D.J.L-S. conceived the project and wrote the article with 24 

contributions of all the authors; D.J.L-S. supervised and completed the writing. D.J.L-25 

S. agrees to serve as the author responsible for contact and ensures 26 

communication. 27 

 Plant Physiology Preview. Published on October 2, 2019, as DOI:10.1104/pp.19.00897

 Copyright 2019 by the American Society of Plant Biologists

 www.plantphysiol.orgon October 16, 2019 - Published by Downloaded from 
Copyright © 2019 American Society of Plant Biologists. All rights reserved.

mailto:ch26@cam.ac.uk
http://www.plantphysiol.org


 

2 
 

Abstract 28 

Cyanobacteria are complex prokaryotes, incorporating a Gram-negative cell wall and 29 

internal thylakoid membranes (TMs). However, localisation of proteins within 30 

cyanobacterial cells is poorly understood. Using subcellular fractionation and 31 

quantitative proteomics we produced an extensive subcellular proteome map of an 32 

entire cyanobacterial cell, identifying ~67% of proteins in Synechocystis sp. PCC 33 

6803, ~1000 more than previous studies. 1,712 proteins were assigned to six 34 

specific subcellular regions. Proteins involved in energy conversion localised to TMs. 35 

The majority of transporters, with the exception of a TM-localised copper importer, 36 

resided in the plasma membrane (PM). Most metabolic enzymes were soluble 37 

although numerous pathways terminated in the TM (notably those involved in 38 

peptidoglycan monomer, NADP+, heme, lipid and carotenoid biosynthesis), or PM 39 

(specifically, those catalysing lipopolysaccharide, molybdopterin, FAD and 40 

phylloquinol biosynthesis). We also identified the proteins involved in the TM and PM 41 

electron transport chains. The majority of ribosomal proteins and enzymes 42 

synthesising the storage compound polyhydroxybuyrate formed distinct clusters 43 

within the data, suggesting similar subcellular distributions to one another, as 44 

expected for proteins operating within multi-component structures. Moreover, 45 

heterogeneity within membrane regions was observed, indicating further cellular 46 

complexity. Cyanobacterial TM protein localisation was conserved in Arabidopsis 47 

thaliana chloroplasts, suggesting similar proteome organisation in more developed 48 

photosynthetic organisms. Successful application of this technique in Synechocystis 49 

suggests it could be applied to mapping the proteomes of other cyanobacteria and 50 

single-celled organisms. The organisation of the cyanobacterial cell revealed here 51 

substantially aids our understanding of these environmentally and biotechnologically 52 

important organisms.   53 
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Introduction  54 

Cyanobacteria (oxygenic photosynthetic bacteria) are a widespread and abundant 55 

phylum of environmental and biotechnological importance (Zwirglmaier et al., 2008; 56 

Ducat et al., 2011). Amongst prokaryotes they are distinguished by the presence of a 57 

highly differentiated series of internal thylakoid membranes (TM), parts of which are 58 

in close contact, but do not fuse with the plasma membrane (PM) (Rast et al., 2019). 59 

The cell envelope is similar to other Gram-negative bacteria, consisting of the PM, 60 

peptidoglycan layer and outer membrane (OM) (Stanier and Cohen-Bazire, 1977) 61 

(Fig. 1).  62 

Cytoplasmic compartments such as the carboxysome, a proteinaceous structure in 63 

which carbon fixation occurs, and various storage bodies containing glycogen, 64 

cyanophycin, polyhydroxybutyrate (PHB), lipids and polyphosphate, add further 65 

complexity to the cell (Liberton et al., 2006; van de Meene et al., 2006). Many 66 

species also contain multiple chromosomal copies (Griese et al., 2011), and in the 67 

case of the model cyanobacterium, Synechocystis sp. PCC 6803 (Synechocystis), 68 

approximately 70% of ribosomes are localised in the central cytoplasm with the 69 

remainder in the cytoplasmic periphery between the PM and TM (20%) or within the 70 

TM stacks (10%) (van de Meene et al., 2006).  71 

Given this intricate organisation, characterising the distribution of the subcellular 72 

proteome is critical in understanding the biochemical and physiological processes 73 

within the cell and the role of individual cellular components, as their spatial 74 

organisation will reflect protein function (Dreger, 2003). Moreover, the chloroplasts of 75 

algal and plant cells are descended from an internalised cyanobacterium (Howe et 76 

al., 2008), with many cyanobacterial genes (De Las Rivas et al., 2002; Martin et al., 77 

2002) and structural features (Hinterstoisser et al., 1993) conserved in 78 

photosynthetic eukaryotes (Fig. 2). Therefore, knowledge of cyanobacterial protein 79 

localisation will help in understanding the evolution of chloroplast ultrastructure from 80 

its cyanobacterial ancestors. 81 

Multiple studies have attempted to verify the distribution of proteins in cyanobacteria, 82 

via analysis of isolated cellular fractions. This approach has been used to elucidate 83 

the proteomes of the membranous (Wang et al., 2000; Huang et al., 2002; Herranen 84 
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et al., 2004; Huang et al., 2004; Srivastava et al., 2005; Huang et al., 2006; Pisareva 85 

et al., 2007; Wang et al., 2009; Zhang et al., 2009; Agarwal et al., 2010; Rowland et 86 

al., 2010; Wegener et al., 2010; Pisareva et al., 2011; Li et al., 2012; Plohnke et al., 87 

2015; Liberton et al., 2016) and soluble (Simon et al., 2002; Huang et al., 2006; 88 

Kurian et al., 2006a; Kurian et al., 2006b; Slabas et al., 2006; Suzuki et al., 2006; 89 

Zhang et al., 2009; Rowland et al., 2010; Wegener et al., 2010; Plohnke et al., 2015) 90 

compartments that constitute Synechocystis (Supplemental Table S1). In these 91 

studies membranes were typically isolated using two-phase aqueous polymer 92 

partitioning and/or sucrose density ultracentrifugation, followed by gel based or 93 

shotgun proteomic analysis.  94 

This approach has been applied to investigate PM (Huang et al., 2002; Pisareva et 95 

al., 2007; Pisareva et al., 2011; Liberton et al., 2016), TM (Wang et al., 2000; 96 

Srivastava et al., 2005; Agarwal et al., 2010; Pisareva et al., 2011; Liberton et al., 97 

2016), OM (Huang et al., 2004) and soluble fractions (Simon et al., 2002). However, 98 

there are numerous inconsistencies in the assignment of protein localisation to 99 

subcellular fractions between these studies (Srivastava et al., 2005; Pisareva et al., 100 

2007; Pisareva et al., 2011; Liberton et al., 2016), suggesting that this approach of 101 

membrane fractionation could have limitations due to technical difficulties in 102 

separating cellular compartments and/or the complicated organisation of 103 

cyanobacterial cells (Pisareva et al., 2011). For example, these methods have been 104 

shown to give ‘purified’ PM fractions that actually contain detectable amounts of TM 105 

e.g. (Zhang et al., 2015; Lea-Smith et al., 2016b). In addition, isolating membranes 106 

via two-phase aqueous polymer partitioning results in considerable losses of cellular 107 

material and under-sampling of the proteome. Furthermore, both the PM and TM 108 

may be heterogeneous (Srivastava et al., 2006; Agarwal et al., 2010; Pisareva et al., 109 

2011) and previous work has suggested that only a hydrocarbon-rich fraction of the 110 

TM, and not the whole membrane, is purified via two-phase partitioning (Lea-Smith 111 

et al., 2016b). For example, a highly curved ‘convergence membrane’ substructure in 112 

the TM was recently observed, which was in close contact with the PM, and may 113 

play a role in biogenesis of thylakoid proteins (Rast et al., 2019). 114 

Recently, a study was published by Liberton et al on the distribution of proteins 115 

between the PM and TM in Synechocystis (Liberton et al., 2016). Two-phase 116 

separation was used to separate the cellular membranes into two partitions 117 
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representative of the PM and TM. Proteins within these two fractions were then 118 

labelled using isobaric tags and analysed via mass spectrometry (MS), resulting in 119 

the quantification of 1,496 proteins. Looking at the distribution of proteins across the 120 

two phases, the authors were able to assign 459 and 176 proteins to the PM or TM, 121 

respectively. This study eliminated the need to obtain complete purification of either 122 

membrane. However, much of the cellular material was discarded during the 123 

purification stages, and the simplified approach of partitioning into two phases meant 124 

that other subcellular compartments, such as the OM, the soluble proteins from the 125 

cytosol, thylakoid lumen and periplasmic space, the carboxysome and storage 126 

bodies, were not taken into account. Additionally, the method was insensitive to 127 

proteins residing in multiple compartments. Furthermore, quantitative variation within 128 

the biological replicates, noted by the authors, rendered the dataset limited in its 129 

utility to assign membrane proteins to specific subcellular structures.  130 

In this study we adapted the hyperLOPIT approach to map the proteins of the entire 131 

Synechocystis cell using spatial proteomics applied to cellular fractions enriched with 132 

various subcellular membranes (Mulvey et al., 2017; Thul et al., 2017). This method 133 

relies on the correlation of proteins within these subcellular fractions using stable 134 

isotope tagging coupled with machine learning approaches to assign similar 135 

fractionation behaviour. The output of this method is the steady state location of a 136 

protein within a cell. This approach resulted in the identification of 2,445 proteins. 137 

This study provides the most complete description of the Synechocystis proteome to 138 

date, covering ~67% of the predicted proteome, and assigns 1,712 proteins to 139 

specific regions of the cell, which can be interrogated via an interactive database. 140 

These regions include the PM, TM, small and large ribosomal subunits, PHB storage 141 

body and soluble fraction, adding a further layer of complexity compared to previous 142 

studies. This work uses a simplified strategy to separate the contents of the cell, 143 

overcoming problems in the purification of membrane systems and loss of cellular 144 

components, leading to a more thorough understanding of the spatial distribution of 145 

proteins within a cyanobacterial cell. 146 

For interactive data mining and data visualisation we have deployed a dedicated 147 

online data app for the community at https://lgatto.shinyapps.io/synechocystis/. The 148 

app contains a searchable and clickable data table, visualisation of the quantitative 149 

protein profiles across both replicates, and a fully interactive PCA plot. 150 
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Results  151 

Fractionation of Synechocystis cell extracts by sucrose density 152 

ultracentrifugation 153 

In order to fractionate cellular components, Synechocystis cells were cultured to late-154 

logarithmic phase (Supplemental Fig. S1) under continuous moderate light (60 µmol 155 

photons m-2 s-1) with air-bubbling at 30°C. Growth conditions and cell harvesting are 156 

similar as those performed in studies where membranes were isolated using two-157 

phase aqueous polymer partitioning (e.g. (Norling et al., 1998; Pisareva et al., 158 

2007)), allowing a comparison of protein localisation between these datasets. Cells 159 

were subsequently lysed and the extract fractionated via sucrose density 160 

centrifugation (Schottkowski et al., 2009). Separation on a step gradient resulted in 161 

cellular material accumulating in the heaviest fraction (Supplemental Fig. S2A).  162 

Further separation of this fraction on a continuous sucrose gradient was therefore 163 

required. This resulted in 12 fractions with varying protein-pigment composition (Fig. 164 

3A), as determined by absorption spectra measurements (Supplemental Fig. S2B), 165 

diverse protein profiles, as evaluated by SDS-PAGE (Supplemental Fig. S2C), and 166 

different distributions of TM and PM, as indicated by immunoblot analysis using 167 

antibodies against TM (photosystem II core light harvesting protein; PsbB (CP47)) 168 

and PM (Sodium-dependent bicarbonate transporter; SbtA) specific marker proteins 169 

(Fig. 3B). These results demonstrate the validity of this approach in effectively 170 

separating and enriching cellular components, a necessary prerequisite for labelling 171 

and subsequent analysis. 172 

Extensive coverage of the Synechocystis proteome by mass spectrometry 173 

reveals sub-clustering of different compartments 174 

Of the twelve fractions obtained from the continuous sucrose gradient, both the 175 

lightest two and the heaviest two were deemed to be most similar to one another 176 

compared with other fractions by SDS-PAGE and were thus combined in pairs to 177 

yield ten fractions, reflecting the number of Tandem Mass Tags (TMT) tags in a 10-178 

plex reagent set. These ten fractions were then labelled with the TMT reagents (Fig. 179 

3C). RP-HPLC was used to separate the proteins according to their hydrophobicity 180 

(Fig. 3D) and provide better resolution before subsequent MS/MS analysis (Fig. 3E). 181 

 www.plantphysiol.orgon October 16, 2019 - Published by Downloaded from 
Copyright © 2019 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

7 
 

In total, the MS analysis resulted in the identification of 2,445 proteins (Supplemental 182 

Table S2; Supplemental Table S3) across both biological replicates, out of a 183 

potential 3,672 listed in the CyanoBase database 184 

(http://genome.annotation.jp/cyanobase). This included 397 predicted integral 185 

membrane, 768 hypothetical and 400 unknown proteins.  186 

Similar scale proteome coverage (2,461 proteins) was recently reported by Spat et al 187 

(Spat et al., 2018). In their study MS analysis was performed on cells cultured under 188 

similar environmental conditions (40 µmol photons m-2 s-1 with air-bubbling at 26°C) 189 

to those used here, but which were nitrogen deprived and then harvested 2, 8, 24 190 

and 55 hours after resuscitation via addition of nitrate. A comparison of protein 191 

coverage between our data and Spat et al showed that 2,127 proteins (~58%) were 192 

detected in both studies (Supplemental Table S4), suggesting that this may be the 193 

core proteome expressed under these laboratory conditions. 318 proteins were only 194 

detected in our study (Supplemental Table S5), while 334 were unique to Spat et al 195 

(Supplemental Table S6). These differences are likely due to the physiological 196 

response induced during resuscitation from nitrogen deprived to replete media or 197 

variation in cell preparation and proteome detection methods. Moreover, 109 198 

proteins were only detected in some of the five Spat et al samples and 82 were 199 

detected at very low quantities. 856 (~25%) were not detected in either study 200 

(Supplemental Table S7), which included 112 with transposon related functions, 290 201 

hypothetical and 275 unknown proteins. This portion of the proteome may be 202 

dormant under these laboratory conditions. 203 

In order to localise proteins to specific regions of the cell, the abundance profile of 204 

each protein along the sucrose gradient was first quantified using the distribution of 205 

TMT reporter ions generated by tandem MS. Assuming that proteins which reside 206 

together in the cell would co-fractionate in the sucrose gradient, we therefore used 207 

this data to interpret the distribution of proteins within the cell. Resulting abundance 208 

profiles of proteins were subjected to principal component analysis (PCA) for 209 

visualisation purposes. The PCA plot represents a map of all 2,445 proteins 210 

identified in both biological replicates, in which proteins with similar distribution 211 

profiles along the gradient are clustered together (Fig. 4A). Marker proteins for 212 

subcellular compartments, including the PM and TM, small and large ribosomal 213 

subunits, and soluble proteins (including cytosolic, thylakoid lumen and periplasmic 214 
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proteins) (Fig. 4B; Supplemental Table S8) were used to identify which clusters on 215 

the plot correspond to which subcellular regions. This resulted in identification of 216 

distinct clusters corresponding to certain subcellular regions, including the PM, TM, 217 

small ribosomal subunit, large ribosomal subunit and soluble proteins, without the 218 

need to obtain pure membrane fractions.  219 

The localisation of previously unclassified proteins was achieved by matching their 220 

profiles along the sucrose gradient to the marker protein profiles. This was carried 221 

out using supervised classification with a support vector machine (SVM) (Gatto et al., 222 

2014) to assign unclassified proteins, defining the boundaries of the subcellular 223 

regions (Fig. 4C), and producing an SVM score for each protein and a predicted 224 

localisation. The SVM score is a measure of the confidence with which the protein 225 

was classified. The majority of assigned proteins (1,054) were found to be soluble, 226 

followed by those that were localised to the PM (436) or TM (147), with only a small 227 

number associated with the small (29) and large (45) ribosomal subunits, including 228 

the protein markers themselves (Supplemental Table S3). No integral membrane 229 

proteins localised to the soluble fraction (Fig. 4D), although a large number of 230 

proteins lacking transmembrane helical domains (TMHs) (Supplemental Table S3) 231 

localised to the PM and TM. The remaining 734 proteins were not classified into any 232 

of these subcellular locations, and were thus given an ‘unclassified’ allocation. Of the 233 

1,168 unknown and hypothetical proteins, 56 were TM localised, 233 PM localised 234 

and 467 were found to be soluble. Seven and five proteins were associated with the 235 

small and large ribosomal subunit fractions, respectively. Further description of the 236 

localisation of sets of proteins including those with a previously assigned function is 237 

given in detail in the supplemental information, along with comparisons with 238 

published localisation information. 239 

Further subcellular regions and compartmentalisation within the cell were observed. 240 

For example, the PM proteome grouped into two distinct regions (Fig. 4C, 5A). A 241 

small proportion of transport and binding proteins were sub-localised within the PM 242 

cluster, in close association with the cell division protein FtsZ, which forms the septal 243 

ring, and the MinCDE proteins, which control the position and shape of the septal 244 

ring. Large ribosomal subunits also grouped into two distinct regions with five 245 

proteins (L16, L28, L27, L19 and L35) forming a distinct cluster close to the PM 246 

region (Fig. 5B). This region also contains the high molecular weight Class A 247 
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penicillin binding proteins (PBPs) PBP1-3, thought to operate in cell elongation and 248 

cytokinesis (Marbouty et al., 2009b). While little is known about the OM proteome, 249 

four proteins designated as ‘probable porin; major OM proteins’ by CyanoBase, and 250 

PilQ, the OM subunit of the pili, were grouped together in a distinct cluster between 251 

the PM and TM regions (Fig. 5C). Moreover, the subunits of certain complexes 252 

clustered together. These included RNA polymerase, RuBisCO, and hydrogenase, 253 

as well as complexes involved in chlorophyll (light-independent protochlorophyllide 254 

reductase subunits ChlN/ChlB) and tryptophan/folate biosynthesis (anthranilate 255 

synthase component I/II (TrpE/TrpG)) (Fig. 5D). This indicates that some complexes 256 

are not disassociated by cell rupture and sucrose gradient separation of cellular 257 

contents. 258 

Comparison with previous subcellular localisation data for the Synechocystis 259 

proteome. 260 

Of the previous studies on subcellular distributions of Synechocystis proteins, the 261 

most comprehensive list was achieved by Liberton and co-workers who used 262 

quantitative proteomics coupled with two-phase separation of cellular membranes to 263 

determine the protein content of the PM and TM (Liberton et al., 2016). 264 

Supplemental figure S3A shows the comparison of the Liberton data with those 265 

presented here. Of note, where both studies assign a protein to either the PM or TM, 266 

there is a high degree of overlap between the assignment and very few proteins 267 

assigned to the PM by Liberton et al are assigned to the TM in this study and vice 268 

versa. There is only limited overall overlap between TM assignments and PM 269 

assignments, however, between the two studies (Supplemental Fig. S3B). This is in 270 

part due to the facts that different proteins were identified in both studies and that the 271 

study presented here represents the whole cell, whereas the Liberton study analysed 272 

only a subset of proteins. Many proteins thought to be TM or PM localised by the 273 

Liberton study are not assigned to either membrane here. It is not clear whether the 274 

additional PM and TM proteins presented in the Liberton study represent 275 

contamination of their TM and PM enriched fractions with proteins from other parts of 276 

the cell, or that the lack of overlap is a result of the fact that the study presented here 277 

returns the steady state location of proteins. Hence, if a TM and PM protein were 278 

also elsewhere in the cell, our study would flag it up as ‘mixed location’. It is 279 

interesting to note that many of the results for the TM and particularly the PM in 280 
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Liberton’s study are assigned to the soluble protein set in the data presented here, 281 

demonstrating the importance of mapping the whole cell and not just isolated 282 

fractions. Analysis of these proteins shows that only 7% have a predicted single 283 

transmembrane domain and the remainder have no predicted membrane spanning 284 

regions, so a location in the TM or PM seems less likely.   285 

Metabolic pathways are distributed throughout the cell 286 

Enzymes involved in metabolism predominantly localised to the soluble region, 287 

including those synthesising amino acids, cofactors, prosthetic groups and carriers, 288 

glycolysis, tricarboxylic acid cycle and pentose phosphate pathway intermediates, 289 

cell wall components, purines and pyrimidines, fatty acids, phospholipids, sterols and 290 

hydrocarbons (Fig. 6; Supplemental Table S3). However, some enzymes, 291 

predominantly those involved in the final catalytic steps of certain metabolites, 292 

localised to membranes. These included enzymes synthesising membrane lipids 293 

(acyltransferase PlsC, fatty acid/phospholipid synthesis protein PlsX, monogalactosyl 294 

diacylglycerol synthase MgdA and phosphatidate cytidylyltransferase CdsA), all of 295 

which localised to the TM. This is likely due to the thylakoids constituting the bulk of 296 

the membranes in the cell and it is possible that a minor percentage of these 297 

proteins are PM localised.  298 

Other TM localised enzymes include those synthesising heme (ferrochelatase 299 

HemH, protoporphyrinogen IX oxidase HemJ) and transhydrogenation of NADP+ 300 

(PntA, PntB). HemJ converts protoporphyrinogen IX to protoporphyrin IX, the 301 

precursor of heme and chlorophyll (Skotnicova et al., 2018). A recent study in 302 

Chlamydomonas reinhardtii indicates that HemJ likely requires plastoquinone as an 303 

electron acceptor (Brzezowski et al., 2019). Localisation of HemJ to the TM in 304 

Synechocystis suggests a similar enzymatic reaction is possible. TM localisation of 305 

PntA/B is consistent with the majority of NADP+ undergoing reduction to NADPH via 306 

ferredoxin-NADP reductase in the TM photosynthetic electron transport chain, and 307 

heme acting as a precursor for phycobilins, subsequently incorporated into 308 

phycobilisomes.  309 

Enzymes synthesising phylloquinol (2-phytyl-1,4-benzoquinone methyltransferase 310 

MenG, MenH), flavin adenine dinucleotide (RibF) and molybdopterin cofactors 311 

(MoeA), were associated with the PM. It is unclear why RibF is PM localised. MenG 312 
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is closely associated with the type two NAD(P)H dehydrogenase, NdbB, on the PCA 313 

plot. Both proteins are required for the final biosynthetic step of phylloquinol 314 

biosynthesis and their close association suggests they may form a complex (Fatihi et 315 

al., 2015). PM localisation of MoeA may aid incorporation of imported molybdate into 316 

the molybdopterin cofactor. 317 

In addition, several enzymes catalysing carotenoid biosynthesis localised to the 318 

membranes. Carotenoids play a key role in assembly of photosynthetic complexes 319 

(Toth et al., 2015), membrane integrity and thylakoid organisation (Mohamed et al., 320 

2004), and as light harvesting and photoprotective pigments. Seven carotenoids 321 

have been detected in Synechocystis: synechoxanthin, myxol-2’-dimethylfucoside 322 

(myxoxanthophyll), zeaxanthin, 3’-hydroxy-echinenone, cis-zeaxanthin, echinenone 323 

and β-carotene (Graham and Bryant, 2008). Carotenoids have been localised to both 324 

membrane fractions (Zhang et al., 2015) but the enzymes involved in biosynthesis of 325 

these compounds have not been completely elucidated or their intracellular location 326 

determined (the pathway is detailed in supplemental figure S4). Enzymes involved in 327 

γ-carotene (CruF) and β-carotene (CrtL and CruA) biosynthesis (Maresca et al., 328 

2007) were TM localised, as were the only enzymes identified in synechoxanthin 329 

(CruE, CruH) and myxoxanthophyll (CruG) biosynthesis (Graham and Bryant, 2009). 330 

The only carotenoid biosynthetic enzyme localised to the PM was the carotene 331 

isomerase CrtH, involved in cis-to-trans conversion of carotenes (Masamoto et al., 332 

2001). However, carotenoid biosynthesis in a ΔCrtH mutant is only affected under 333 

dark conditions, not light, and its exact role in the cell has not been determined 334 

(Masamoto et al., 2001). 335 

A few proteins involved in intermediate enzymatic steps localised to membranes. For 336 

example, the long-chain-fatty-acid CoA ligase Aas, involved in the cycling of free fatty 337 

acids via activation by acyl carrier protein (ACP), localised to the PM, which is in 338 

agreement with Liberton et al (Liberton et al., 2016). This supports the proposed role 339 

of Aas in mediating fatty acid import (von Berlepsch et al., 2012). Dihydroorotate 340 

dehydrogenase (PyrD), the only membrane associated enzyme involved in 341 

nucleotide metabolism, also localised to the PM. In E. coli, PyrD requires a 342 

respiratory quinone as an electron acceptor (Nørager et al., 2002). Our data suggest 343 

that Synechocystis PyrD may utilise plastoquinone (PQ) as an electron acceptor, 344 

which could be one of the roles of the PM electron transport chain. 345 
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Assembly of cell wall components occurs in both membranes 346 

A similar pattern was observed with enzymes involved in biosynthesis of cell wall 347 

components (Fig. 7). The enzymes catalysing the initial steps of the core region of 348 

lipopolysaccharides (LpxACD) were soluble, while the one catalysing the final step of 349 

lipid A disaccharide bisynthesis (LpxB), localised to the PM. MsbA, the flippase that 350 

translocates lipid A disaccharide across the PM (Ruiz et al., 2009), has not been 351 

identified in cyanobacteria. However, four genes with high sequence similarity to E. 352 

coli msbA (slr2019, sll1276, sll1725, slr1149; 70.5, 69.6, 64.9, 66.3% similarity, 353 

respectively) were identified in our study. All localised to the PM, so further genetic 354 

and biochemical studies will be required to identify cyanobacterial MsbA. Several 355 

putative glycosyltransferases (RfbU, 2 x RfbW, RfbJ, RffM), postulated to add sugar 356 

groups to the outer core of this molecule (Fisher et al., 2013), also localised to the 357 

PM. Homologs of the proteins in the Lpt transport complex, responsible for 358 

transporting lipopolysaccharides from the PM to the outer leaflet of the OM in E. coli 359 

(Ruiz et al., 2009), are not present in Synechocystis, suggesting an alternate system 360 

must perform this role. 361 

The enzymes catalysing the initial steps of peptidoglycan monomer biosynthesis 362 

(MurABCDEF) were soluble. Somewhat suprisingly, the final two steps of 363 

peptidoglycan monomer biosynthesis (MraY, MurG) localised to the TM, not the PM 364 

as would be expected. MurG has been identified as TM specific in a previous study 365 

(Pisareva et al., 2011). This would suggest that monomers are assembled at the TM, 366 

and subsequently transported to the PM. A single homolog of MurJ (slr0488), the 367 

flippase which translocates peptidoglycan monomers across the PM (Sham et al., 368 

2014), is present in Synechocystis but was not detected in our study or in Spat et al 369 

or Liberton et al (Liberton et al., 2016; Spat et al., 2018). Neither was FtsW, 370 

responsible for peptidoglycan polymerisation in association with PBPs (Taguchi et 371 

al., 2019). Our knowledge of the role of cyanobacterial PBPs is limited, although all 372 

eight putative PBPs, separated into class A (PBP 1-3), B (PBP4/FtsI) and C (PBP 5-373 

8), were detected. While PBP4 is essential in Synechocystis, single mutants deficient 374 

in one class A or C PBP have been generated, although not mutants lacking two of 375 

each class (Marbouty et al., 2009b). PBP1-3 co-localised in a unique cluster on the 376 

PCA plot, PBP4 and PBP6/8 localised to different PM regions, while PBP5/7 was 377 
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soluble (Fig. 5B). Both class A and B PBPs are believed to be involved in 378 

peptidoglycan polymerization, with class A primarily involved in synthesis of the cell 379 

wall linked to cell elongation, while class B interacts with other proteins of the 380 

divisome, with a primary role in cell division (Sauvage et al., 2008). Other 381 

components of the divisome including Cdv3, ZipN and ZipS (Marbouty et al., 2009a), 382 

also localised to the PM in our study. In Synechocystis, the Type C PBPs are divided 383 

into two classes, type 4 (PBP 5/8) and AmpH (PBP 6/7) (Marbouty et al., 2009b). 384 

PBP5/7 are soluble, presumably in the periplasm, while PBP6/8 are PM associated. 385 

Their primary role is likely in disassembling the peptidoglycan heteropolymer with 386 

other proteins such as the N-acetylmuramoyl-L-alanine amidases, which were also 387 

PM localised (Slr1744) or soluble (Slr0891) (van Heijenoort, 2011). 388 

The thylakoid membrane proteome is predominantly involved in energy 389 

conversion 390 

As expected, the majority of subunits in photosynthetic complexes, including 391 

Photosystem I and II (PSI and PSII), and cytochrome b6f (cyt b6f), were TM localised 392 

(Fig. 8A; Supplemental Table S3). Other proteins associated with photosystems 393 

including the PSII assembly protein RubA, Ycf48 and Ycf39 (Garcia-Cerdan et al., 394 

2019; Kiss et al., 2019), the putative PSI assembly proteins Ycf4 and Ycf37, and 395 

IsiA, which is required for PSI formation and state transitions under iron starvation, 396 

were also TM localised. In addition, CpcG2, an integral protein of the phycobilisome, 397 

the light harvesting complex of cyanobacteria, localised to this compartment 398 

although other phycobilisome subunits were predominantly soluble. Respiration has 399 

previously been established to occur in the TM (Lea-Smith et al., 2016a), although 400 

the location of electron transport complexes has not been fully established. Of the 401 

respiratory electron donors, only NADH dehydrogenase type 1 subunits were TM 402 

localised (Fig. 8B). The membrane subunits of succinate dehydrogenase have not 403 

been identified (Lea-Smith et al., 2016a), although it has been suggested as the 404 

main TM localised respiratory donor (Cooley and Vermaas, 2001). Subunits of two 405 

terminal oxidases, cytochrome-c oxidase and cytochrome bd-quinol oxidase, 406 

localised to the TM. Interestingly, ATP synthase subunits localised to the TM, in 407 

agreement with Liberton et al (Liberton et al., 2016). Overall, this suggests that 408 

energy conversion is predominantly localised to the TM. Other proteins of note that 409 
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localised to the TM include three FtsH proteins involved in PSII repair (FtsH2, FtsH3, 410 

FtsH4), the thiol:disulphide interchange protein TrxA and the detoxification protein 411 

Slr0236. Only six proteins involved in transport localised to the TM, including three 412 

Na+/H+ antiporters (NhaS1, NhaS3, NhaS6), the copper importer CtaA, the H+/Ca2+ 413 

exchanger SynCAX and an ABC transporter (Sll0759). Of the 83 characterised 414 

proteins localised to the TM, 63 are involved in energy conversion, photosystem 415 

repair/assembly or synthesis of lipids required for membrane assembly or 416 

photosystem function.  417 

The plasma membrane proteome is predominantly involved in transport and 418 

regulatory functions 419 

The majority of proteins involved in transport localised to the PM (Fig. 6; 420 

Supplemental Table S3). These included the transporters of ammonium, basic and 421 

neutral amino acids, glutamate, bicarbonate, inorganic iron and iron dicitrate, 422 

glucosylglycerol, manganese, molybdate, nitrate/nitrite, phosphate, potassium, 423 

sulfate, urea and zinc. Copper is required in both the cytoplasm and thylakoid lumen. 424 

Previously it has been thought that copper is transported into the cytosol and 425 

thylakoid lumen via PM localised CtaA and TM localised PacS, respectively, based 426 

on studies performed in Synechococcus elongatus (Kanamaru et al., 1994; Tottey et 427 

al., 2012). In contrast, our results placed CtaA in the TM and PacS in the PM. 428 

A second, poorly characterised, electron transport chain localises to the PM (Lea-429 

Smith et al., 2016a). Two NAD(P)H dehydrogenase type 2 electron donor proteins 430 

(NdbB, NdbC) and subunits of the alternative respiratory terminal oxidase localised 431 

to the PM, suggesting the presence of a simpler electron transport chain in this 432 

compartment (Fig. 8C). NdbB is required for phylloquinol biosynthesis (Fatihi et al., 433 

2015). Deletion of NdbB resulted in almost a complete loss of phylloquinol and 434 

accumulation of the precursor molecule, 2-phytyl-1,4-naphthoquinone. NdbB was 435 

shown to reduce 2-phytyl-1,4-naphthoquinone to 2-phytyl-1,4-naphthoquinol using 436 

electrons derived from NADPH (Fatihi et al., 2015), which is subsequently 437 

methylated to phylloquinol by MenG (Sakuragi et al., 2002). Other proteins of note 438 

that localised to the PM included the cell division proteins MinD and FtsH1, the 439 

chaperone DnaK3, chemotaxis proteins PixJ1 and TaxD2, the competence protein 440 

ComE involved in DNA uptake, the detoxification protein Gst1 and the sigma factor 441 
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SigF. Pili proteins localised to the PM, including 8/11 PilA designated subunits 442 

(another, PilA6, is unclassified but is in the PM region of the PCA plot), with the 443 

exception of PilQ, the OM subunit, and PilH, which was soluble. PilA1 is required for 444 

formation of thick pili (Yoshihara et al., 2001), but expression of the other 8 PilA 445 

proteins suggests they have a functional role in the cell under these growth 446 

conditions. Two proteins involved in DNA replication, DnaG, the DNA primase, which 447 

synthesises oligonucleotides, and DnaX, a DNA polymerase II subunit, were both 448 

PM localised. The PM may therefore play an active role in DNA replication or 449 

regulation, which has been suggested to occur in E. coli (Saxena et al., 2013; 450 

Magnan et al., 2015). 451 

Protein translocation pathways localise to the thylakoid membrane 452 

The mechanism by which cyanobacteria target proteins to different membranes is 453 

poorly characterized. Single copy homologues encoding proteins involved in the 454 

Secretory (Sec), Twin-Arginine Translocation (Tat) and Signal Recognition Particle 455 

(SRP) protein translocation pathways are present in the Synechocystis genome 456 

(Kaneko et al., 1996). Components of each pathway were either soluble or TM 457 

localised. 458 

Two leader peptidases (LepB1, LepB2), which are involved in generation of mature 459 

proteins and may also have a role in releasing proteins into the correct compartment, 460 

have been identified in Synechocystis. Only LepB2 is essential for cell viability, and 461 

the two are not functionally redundant (Zhbanko et al., 2005). Both leader peptidases 462 

were identified in the study; LepB1 localised to the PM, whilst LepB2 was 463 

unclassified. In contrast to this work, previous proteomic studies and investigations 464 

into the leader peptidases have identified LepB1 as a TM specific protein, with a 465 

suggested function in maturation of the photosynthetic machinery (Srivastava et al., 466 

2005; Zhbanko et al., 2005; Pisareva et al., 2011; Liberton et al., 2016). 467 

Various intracellular organelles localise to distinct regions of the cytosol 468 

Transmission electron microscopy indicates that carboxysomes in Synechocystis are 469 

located in the central cytoplasm (van de Meene et al., 2006). Most carboxysome 470 

subunits were found to be soluble, with the exception of CcmM, which was PM 471 

localised, and CcmN and CcaA, which were localised to an unclassified fraction. 472 
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CcmM and CcmN are core shell proteins and CcaA is the carbonic anhydrase, 473 

converting HCO3
- to CO2 (Gonzalez-Esquer et al., 2015). This suggests that certain 474 

subunits may interact with the PM or that cell disruption and subsequent separation 475 

caused the carboxysome to break apart due to its large size (between 80 and 150 476 

nm in diameter), resulting in distribution of various subunits across the sucrose 477 

gradient and in the PCA plot (Supplemental Fig. S5). Interestingly, the enzyme 478 

catalysing the initial step of photorespiration (Pgp), the conversion of 479 

phosphoglycolate to glycolate, was also PM localised. The two subunits of RuBisCO, 480 

RbcS and RbcL, which are assembled into the carboxysome (Wang et al., 2019), 481 

were found in a different area and grouped in a distinct unclassified fraction.  482 

Of the enzymes involved in forming compounds which aggregate into storage 483 

bodies, only heterodimeric PHB synthase (PhaE/PhaC), catalysing the final step of 484 

PHB biosynthesis, was found. PhaE/PhaC, along with PhaP (ssl2501) which is the 485 

surface coding protein of PHB granules, mapped to a unique unclassified region 486 

separate from any other proteins on the PCA plot (Fig. 5C). This suggests PHB 487 

synthesis may occur in a specific, distinct part of the cytosol (Hauf et al., 2015). GFP 488 

labelling of PhaC, PhaE, and PHB granules indicate that these biosynthetic steps are 489 

localised to the cell periphery (Hauf et al., 2013). 490 

Profiles of ribosomal subunits show clustering in a specific region of the PCA 491 

plot  492 

The majority of the large ribosomal subunit proteins localised to a specific fraction 493 

separate from the TM, PM and soluble regions (Fig. 4C). Likewise, the majority of 494 

the small ribosomal proteins clustered in a specific region of the plot, distinct from 495 

the large ribosomal subunit protein area (Fig. 4C). However, three small ribosomal 496 

proteins were found in other locations on the plot. Two poorly characterised Rps1 497 

homologues (Rps1A, Rps1B) localised to the soluble fraction, whilst Rps3 localised 498 

to the TM. Rps1 subunits are not present in all bacteria, and participate in recruiting 499 

mRNA to the 30S subunit where it is localised on the solvent side (Yusupova and 500 

Yusupov, 2014). All sequenced cyanobacteria with the exception of Gloeobacter 501 

kilaueensis JS1 and Gloeobacter violaceus PCC 7421, which lack TMs, encode two 502 

Rps1 subunits (Supplemental Fig. S6 and S7). Therefore, it is possible Rps1 503 

subunits may play a role in determining protein localisation to different subcellular 504 
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locations. Rps3 is thought to form the mRNA entry tunnel along with Rps4 and Rps5 505 

in bacteria (Ito and Chiba, 2014) and it is possible that it may play an ancillary role in 506 

anchoring a particular fraction of ribosomes to the TM. A few other proteins localised 507 

to this fraction. For example, HemA, a transfer RNA-Glutamyl reductase which 508 

catalyses the first step in the heme biosynthesis pathway and uses charged tRNA-509 

Glutamyl as a substrate, localised to the large ribosomal subunit protein fraction. In 510 

addition, Vipp1, a protein implicated in thylakoid membrane biogenesis, localised to 511 

the small ribosomal subunit protein fraction. The subcellular location and exact 512 

function of this protein in Synechocystis has been a matter of some controversy 513 

(Westphal et al., 2001; Hennig et al., 2015). However, localisation to the ribosomal 514 

fractions is consistent with a proposed role in organising localised protein assembly 515 

centres, as suggested by Bryan et al (Bryan et al., 2014). 516 

Homologues of Synechocystis thylakoid membrane proteins localise to the 517 

same compartment in Arabidopsis 518 

In order to determine whether localisation of Arabidopsis homologues of 519 

Synechocystis proteins have been conserved in the corresponding region of the 520 

chloroplast, proteins that have been assigned to either the TM or envelope from 521 

Arabidopsis (Ferro et al., 2010) were compared with the results obtained in this study 522 

(Supplemental Table S9). Of the TM-specific Arabidopsis homologues, six PSI, eight 523 

PSII, four cyt b6f and four ATP synthase membrane bound components were 524 

identified here, in addition to nine homologues of the chloroplast NADH 525 

dehydrogenase like complex (NDH), which is known to localise to the chloroplast 526 

thylakoid membrane (Shikanai, 2016). Out of three TM-specific Arabidopsis 527 

homologues not found in these complexes, all localised to the TM in Synechocystis, 528 

including two hypothetical proteins (sll1390, slr1470). Therefore, 34 out of 34 TM-529 

specific Arabidopsis homologues localised to the same membrane in Synechocystis. 530 

Of the 31 homologous Arabidopsis chloroplast envelope proteins, 22 were identified 531 

in Synechocystis, with ten in the PM and seven in the TM, while the remainder were 532 

unclassified. Of these seven, two are involved in lipid biosynthesis. In Arabidopsis, 533 

the essential pathway for thylakoid lipid biosynthesis requires export of fatty acids 534 

from the chloroplast to the endoplasmic reticulum (Xu et al., 2005). This suggests 535 

that a number of TM localised processes have been transferred to the envelope in 536 
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chloroplasts during evolutionary remodelling, presumably to accommodate the 537 

requirements of organelle function in a eukaryotic cell. One protein, Sll0269, 538 

associated with the small ribosomal subunit region. Proteins homologous to TM 539 

specific proteins in Arabidopsis are nearly all exclusive to the TM in Synechocystis. 540 

Of the remaining 62 uncharacterised TM localised proteins in Synechocystis, 10 541 

(slr1747, sll0862, sll0875, sll1071, sll1399, sll1925, slr0575, slr1591, slr1821, 542 

slr1919) have homologues in Chlamydomonas reinhardtii and Arabidopsis, 543 

suggesting a conserved role throughout the photosynthetic lineage (Highlighted in 544 

red in Supplemental Table S10). In contrast, the Arabidopsis envelope proteins are 545 

distributed in both the PM and TM of Synechocystis.  546 

Discussion 547 

Here we detail a method for separating and analysing the cellular components of 548 

Synechocystis, resulting in the most extensive proteome mapping of a 549 

cyanobacterium to date. The importance of examining the whole cell compared to 550 

fractions enriched in individual compartments is highlighted by the assignment of a 551 

large number of proteins, most lacking membrane spanning domains, to the soluble 552 

fraction in our study which had previously been assigned to membranes in the 553 

Liberton study or earlier reports using ‘purified’ fractions e.g. (Pisareva et al., 2007). 554 

In the cells examined in this study, which were cultured under continuous moderate 555 

light and carbon replete conditions, approximately two-thirds of the proteome was 556 

detected, demonstrating the advantages of this proteomics technique compared to 557 

those previously applied to map proteins in cyanobacteria. In certain cases the 558 

technique described here allowed identification of the isoenzyme catalysing specific 559 

biosynthetic steps under these conditions. For example only one of the two possible 560 

aspartate aminotransferases (Sll0402) was detected. The remaining proteome may 561 

not have been detected for a variety of reasons. Only proteins which were identified 562 

in both replicates were included, and, whilst MS is a sensitive method, some proteins 563 

may be expressed at levels too low to be detected via this approach. Other proteins 564 

may simply not be expressed under these conditions. Examples of this include 565 

proteins expressed only under microoxic conditions such as Ho2, involved in 566 

phycobiliprotein biosynthesis, and PsbA1, a subunit of PSII (Summerfield et al., 567 

2008), and conditions of low carbon dioxide availability, such as the flavodiiron 568 
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proteins Flv2 and Flv4 (Zhang et al., 2012). Of the 1227 potential proteins not 569 

detected, 444 were hypothetical proteins and 360 were unknown. It is possible that 570 

the genes encoding these proteins may not produce functional products or be 571 

transcriptionally inactive. Regardless, the development of a robust technique for 572 

separating cellular components will facilitate proteomics of Synechocystis cultured 573 

under a range of environmental conditions. This technique may also be useful for 574 

analysing the proteome of other cyanobacteria and possibly microalgae, especially 575 

since membrane separation techniques are poorly developed in unicellular 576 

photosynthetic species apart from Synechocystis and are not ideal due to large 577 

amounts of cellular material being lost. Other prokaryotes which have complicated 578 

internal structures, such as purple photosynthetic bacteria, or complex multi-layered 579 

cell walls, for example Corynebacterineae, may also benefit from analysis via these 580 

methods. 581 

The higher proportion of proteins detected and localised to specific regions of the cell 582 

in this study compared to published data using purified membranes further 583 

emphasises the advantages of this method. Purification of only a sub-fraction of 584 

cellular components in past studies may explain this difference. The heterogeneous 585 

nature of the membranes and cytoplasm of Synechocystis is illustrated by the 586 

existence of sub-regions within the PCA plot (Fig. 5A). Particularly intriguing was the 587 

presence of possible sub fractions in the PM and a region that may correspond to 588 

the OM. While it is not possible for us to define these regions currently, due to our 589 

lack of knowledge of their composition, previous studies have suggested a 590 

heterogeneous distribution of proteins within the PM and TM (Srivastava et al., 2006; 591 

Agarwal et al., 2010; Straskova et al., 2019). As our understanding of processes 592 

within the cells increases, other regions, or sub-regions, may be identified. For 593 

example, as the proteins embedded within the OM become better identified and 594 

characterised we can integrate this into our model to carry out further predictions of 595 

the proteome of this region.  596 

The complexity of cyanobacteria compared to other prokaryotes is likely to be due to 597 

the requirement to separate photosynthesis into a separate compartment, which is 598 

supported by our results. The majority of metabolic enzymes are soluble, whereas 599 

the TM and PM have specialised roles focusing primarily on energy conversion and 600 
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transport, respectively (Fig. 6). While this is obviously a successful evolutionary 601 

strategy, the presence of multiple compartments, further complicated by the 602 

presence of sub-regions within the membranes and possibly the cytosol, means that 603 

these organisms require a complex targeting system capable of directing proteins to 604 

the correct location. How this occurs is still poorly understood (Frain et al., 2016). 605 

Subunits of the protein translocation systems localised only to the TM, although it is 606 

possible that a small proportion are present in the PM. Intriguingly, the leader 607 

peptidase LepB1, localised specifically to the PM. Therefore, it is possible that this 608 

protein has a role in targeting proteins specifically to this membrane. Another 609 

possibility is that mRNAs migrate to specific subcellular locations (Nevo-Dinur et al., 610 

2011; Moffitt et al., 2016) and that following translation proteins are inserted into the 611 

membrane or region in closest proximity. This is a distinct possibility given the spatial 612 

distribution of ribosomes throughout the cell. Furthermore, ribosomes on membrane-613 

like structures connected to the TM have been observed in Synechocystis (van de 614 

Meene et al., 2006). Certain ribosomal subunits, such as TM localised Rps3 and 615 

cytosolic Rps1A and Rps1B, may have a role in anchoring ribosomes to different 616 

cellular regions. Our study has also provided insights into the proteomic remodelling 617 

associated with the evolution of a chloroplast from a cyanobacterium. 618 

Although the method developed as part of this study has achieved the most 619 

extensive subcellular map of Synechocystis to date, the approach is not without 620 

some limitations. While subunits of some protein complexes co-localised on the PCA 621 

plot, others may have dissociated from one another during sample preparation, and 622 

in future it would be interesting to compare these data with those obtained using a 623 

workflow that employs protein crosslinking reagents (Liu et al., 2015; Leitner et al., 624 

2016). Furthermore, the data visualisation methods employed use a dimension 625 

reduction approach and it cannot be ruled out that the apparent resolution of some 626 

un-related cellular substructures is lost as a result of this or by the physical 627 

subcellular separation methods employed. In future it would be interesting to see 628 

how the map presented here compares with similar data achieved using different cell 629 

fractionation methods such as differential centrifugation and free flow 630 

electrophoresis, or other spatial approaches involving proximity tagging (Lam et al., 631 

2015; Kim et al., 2016; Loh et al., 2016). Ultimately, our knowledge of many aspects 632 

of cyanobacterial biology is poor, with function assigned to only about 50% of genes 633 

 www.plantphysiol.orgon October 16, 2019 - Published by Downloaded from 
Copyright © 2019 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

21 
 

in Synechocystis (http://genome.annotation.jp/cyanobase), the most highly 634 

characterised species within the phylum. Since the majority of the proteins identified 635 

in this study have no assigned function, understanding their location in the cell will 636 

aid future studies characterising their exact role. For example, Slr0060, currently 637 

classified as an unknown protein, may be associated with PHB granules due to its 638 

proximity to PhaE, PhaC and PhaP in our data. Of particular interest are the 10 TM 639 

localised, uncharacterised proteins that have homologues in C. reinhardtii and 640 

Arabidopsis, which are likely to have a conserved role in photosynthesis. 641 

This database is the largest and most extensive list of the Synechocystis TM and PM 642 

proteome and is an invaluable tool to identify how proteins are targeted to each 643 

compartment and how these mechanisms could be utilised to insert recombinant 644 

proteins into different membrane compartments for biotechnology applications, i.e. 645 

insertion of transporters into the PM for export of biofuels and industrial compounds.    646 
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Methods 647 

Bacterial strains, media, and growth conditions 648 

Synechocystis sp. PCC 6803 was routinely cultured in liquid BG11 medium with 10 649 

mM sodium bicarbonate (Castenholz, 1988) at 30°C and grown under continuous 650 

moderate white light (50 µmol photons m-2 s-1) with vigorous air bubbling and 651 

shaking at 160 rpm. For growth of larger cultures, two 50 ml starter cultures were 652 

grown for 3-4 days in BG11 medium with 10 mM sodium bicarbonate to OD750nm = 653 

~1 and used to inoculate 2 x 2 L flasks containing 1 L of BG11 medium with 10 mM 654 

sodium bicarbonate. Cultures were air bubbled and harvested at OD750nm = ~2. 655 

Cell lysis and subcellular fractionation 656 

Whole-cell lysate was fractionated by sucrose density ultracentrifugation, as 657 

previously described (Schottkowski et al., 2009), with modifications. All steps were 658 

carried out at 4°C. Cells were harvested from 2 l cultures, by centrifugation at 5,000g 659 

for 10 min. The cell pellet was washed in 50 ml Buffer I (5 mM Tris-HCl, pH 6.8) and 660 

centrifuged at 5,000g for 10 min. The resulting cell pellet was re-suspended in 75 ml 661 

Buffer II (10 mM Tris-HCl, 1 mM PMSF, 600 mM sucrose, 5 mM EDTA, 0.2% (w/v) 662 

lysozyme, pH 6.8), and shaken at 160 rpm for 2 h at 30°C before centrifugation at 663 

5,000g for 10 min. The cell pellet was washed twice with Buffer III (20 mM Tris-HCl, 664 

1 mM PMSF, 600 mM sucrose, pH 6.8) and re-suspended in 17.5 ml of the same 665 

buffer, to which half the volume of 425-600 µm acid-washed glass beads was added. 666 

Cells were disrupted in a Mini Bead Beater-16 (BioSpec Products) for 10 min at 667 

3,450 oscillations/min, with 1 min intervals on ice. The cell suspension was 668 

centrifuged at 3,000g for 10 min to pellet unbroken cells. The supernatant was 669 

concentrated to 50% sucrose by the addition of 80% sucrose (w/w) in Buffer II to a 670 

final volume of 10 ml. The refractive index of sucrose solutions was measured to 671 

ensure correct concentrations by using a hand-held refractometer (Reichert). A 672 

discontinuous sucrose gradient containing Buffer II was made, consisting of 10 ml 673 

50% (w/w) including cell lysate, 8 ml 39% (w/w), 6 ml 30% (w/w), and 6 ml 10% 674 

(w/w), and centrifuged at 125,000g for 17 h (SW 32 Ti Swinging Bucket Rotor, 675 

Beckman Coulter Optima L-100 XP Ultracentrifuge). Fractions 10% (I), 30% (II), 39% 676 

(III), and 50% (IV) were collected using a fraction collector (LabConco). Fraction V 677 

was diluted with 5 mM Tris-HCl buffer (pH 6.8) to a concentration of 20% (w/w) and 678 
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added onto a continuous sucrose gradient from 30% (w/w) to 60% (w/w) and 679 

centrifuged at 125,000g for 17 h. 2.5 ml fractions were collected (1-12) using a 680 

fraction collector.  681 

Protein precipitation was performed using a methanol-chloroform system (chilled 682 

methanol/chloroform/water, 4:1:3 (v/v/v)) (Wessel and Flügge, 1984). Protein was 683 

recovered at the interphase after vigorous vortexing for 30 s and centrifugation at 684 

13,000g for 90 s at 4°C. The upper phase was discarded and the protein disc 685 

washed in 3 volumes of methanol before further centrifugation (13,000g, 90 s, 4°C) 686 

to pellet the protein, which was air-dried after removal of the supernatant. Protein 687 

pellets were solubilised by re-suspension in 150 µl 50 mM HEPES-NaOH, 0.2% SDS 688 

(w/v) (pH 7.4), and incubated at 42°C for 15 min. Protein concentration was 689 

determined using the DC Protein Assay kit (Bio-Rad). 690 

SDS-PAGE and immunoblotting  691 

Samples from each of the fractions collected were boiled in 4 x Laemmli sample 692 

buffer for 10 min. Proteins were resolved on a 4-20% SDS-PAGE gel (Bio-Rad), 693 

transferred to PVDF membrane (Amersham Hybond-P, 0.45 µm; GE Healthcare), 694 

and detected with antibodies against PM (SbtA, 1/2,000; Agrisera) and TM (CP47, 695 

1/2,000; Agrisera) specific proteins (Norling et al., 1998; Zhang et al., 2004) by 696 

chemiluminescence using WesternBright Quantum Blotting Detection Reagent 697 

(Advansta). Visualisation was carried out using a G:Box imaging system (Syngene). 698 

Protein digestion and TMT 10-plex labelling 699 

Sucrose gradient fractions 1 and 2, as well as 11 and 12, were combined, leaving 10 700 

samples for TMT 10-plex labelling. Each sample was normalised to 100 µg of protein 701 

in 25 mM TEAB, before being reduced, alkylated and digested with trypsin. Each 702 

sample was made up to a total volume of 50 µl with 25 mM TEAB. Disulphide bonds 703 

were reduced with 5 µl 200 mM tris(2-carboxyethyl)phosphine for 1h at 55°C, 704 

followed by alkylation of cysteine residues with 5 µl of 375 mM iodoacetamide for 20 705 

min at room temperature in the dark. Protein was precipitated from the samples by 706 

addition of 6 volumes of ice-cold acetone, vortexing and incubation at -20°C 707 

overnight. The protein pellet was recovered by centrifugation at 16,000g for 10 min, 708 

air-dried, and solubilised in 100 µl 100 mM HEPES (pH 8.5). Samples were digested 709 

with 2.5 µg sequencing grade trypsin (Promega) for 1h at 37°C. A second aliquot of 710 
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2.5 µg trypsin was added to the samples, and incubated at 37°C overnight. Trypsin 711 

digests were centrifuged for 10 min at 13,000g to remove any insoluble material. 712 

The 10 TMT tags were equilibrated to room temperature and re-suspended in 41 µl 713 

acetonitrile before being added to each of the 10 peptide samples. Samples were 714 

placed onto a shaker for 2 h at room temperature. TMT labelling efficiency was 715 

between 93-95%. Un-reacted TMT tags were quenched with 8 µl 5% (w/v) 716 

hydroxylamine in 100 mM HEPES (pH 8.5) for 1 h at room temperature. 100 µl of 717 

ultrapure water was added and the samples incubated at 4°C overnight. The 718 

samples were then combined and reduced to dryness by vacuum centrifugation.  719 

The solid-phase extraction of TMT-labelled peptides was performed according to the 720 

method previously described (Villén and Gygi, 2008), with modifications. The 721 

samples were re-suspended in 1 ml of 0.4% (v/v) formic acid, and placed onto 100 722 

mg Sep Pak tC28 solid phase extraction cartridges (Waters Corporation). Cartridges 723 

were conditioned using 1.8 ml 100% (v/v) acetonitrile, followed by 50% (v/v) 724 

acetonitrile and 0.5% (v/v) acetic acid, and equilibrated with 1.8 ml 0.1% (v/v) formic 725 

acid. The peptides were de-salted after loading in 1.8 ml 0.1% (v/v) formic acid, re-726 

equilibrated with 500 µl 0.5% (v/v) acetic acid. Samples were eluted with 0.5 ml 75% 727 

(v/v) methanol with 0.5% (v/v) acetic acid, followed by 75% (v/v) acetonitrile with 728 

0.5% (v/v) acetic acid, and reduced to dryness by vacuum centrifugation before re-729 

suspension in 0.1 ml 20 mM ammonium formate (pH 10), 4% (v/v) acetonitrile, for 730 

high pH reversed-phase liquid chromatography. 731 

Sample fractionation 732 

Peptides were loaded onto an Acquity bridged ethyl hybrid C18 UPLC column 733 

(Waters; 2.1 mm inner diameter x 150 mm, 1.7 µm particle size), and profiled with a 734 

linear gradient of 5-75% acetonitrile + 20 mM ammonium formate (pH 10) over 50 735 

min, at a flow rate of 50 µl/min. Chromatographic performance was monitored by 736 

sampling eluate with a diode array detector (Acquity UPLC, Waters) scanning 737 

between wavelengths of 200 and 400 nm. 44 fractions were collected from 11 min 738 

onwards in 1 min intervals. Fractions 1-8 were pooled together, and the rest were 739 

pooled pair-wise, with fraction 9 pooled with fraction 26, 10 with 27 and so on to yield 740 

19 samples for mass spectrometry analysis. 741 

Mass spectrometry 742 
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All LC-MS/MS experiments were performed using a Dionex Ultimate 3000 RSLC 743 

nanoUPLC (Thermo Fisher Scientific) system and a Lumos Fusion Orbitrap mass 744 

spectrometer (Thermo Fisher Scientific) using synchronous precursor selection 745 

(SPS)-MS. Each of the fractionated samples was resuspended in 35 µL 0.1% (v/v) 746 

formic acid and between 1-5 µL of these was applied to LC-MS/MS analysis using an 747 

Orbitrap Fusion Lumos coupled with a Proxeon EASY-nLC 1000 (Thermo Fisher 748 

Scientific). Separation of peptides was performed by reverse-phase chromatography 749 

at a flow rate of 300 nl/minute and a Thermo Scientific reverse-phase nano Easy-750 

spray column (Thermo Scientific PepMap C18, 2 μm particle size, 100A pore size, 751 

75 μm i.d. x 50 cm length). Peptides were loaded onto a pre-column (Thermo 752 

Scientific PepMap 100 C18, 5 μm particle size, 100A pore size, 300 μm i.d. x 5 mm 753 

length) from the Ultimate 3000 autosampler with 0.1% formic acid for 3 minutes at a 754 

flow rate of 10 μl/minute. After this period, the column valve was switched to allow 755 

elution of peptides from the pre-column onto the analytical column. Solvent A was 756 

water + 0.1% formic acid and solvent B was 80% acetonitrile, 20% water + 0.1% 757 

formic acid. The linear gradient employed was 4-140 B in 100 minutes (the total run 758 

time including column washing and re-equilibration was 120 minutes). 759 

An electrospray voltage of 2.1 kV was applied to the eluent via the EASY-Spray 760 

column electrode. The following workflow in the Method Editor was used: MS OT 761 

(Detector type: Orbitrap, Resolution: 120000, Mass range: Normal, Use Quadrupole 762 

Isolation (Yes), Scan Range: 380-1500, RF Lens (%): 30, AGC Target: 4e5, Max 763 

Inject Time: 50 ms, Microscans: 1, Data Type: Profile, Polarity: Positive) - 764 

Monoisotopic Precursor Selection (MIPS) (Monoisotopic Peak Determination: 765 

Peptide, Relax restrictions when too few precursors are found: Yes) - Charge State 766 

(Include charge state(s): 2-7) - Dynamic Exclusion (Exclude after n times: 1, 767 

Exclusion duration (s): 70, Mass Tolerance; ppm, Low: 10, High: 10, Exclude 768 

Isotopes: Yes, Perform dependent scan on single charge state per precursor only: 769 

Yes) - Intensity Threshold (5.0e3) - Decisions (Data dependent mode: Top Speed, 770 

Number of Scan Event Types: 1, Scan Event Type 1: No Condition) - ddMS2 IT CID 771 

(MSn Level: 2, Isolation Mode: Quadrupole, Isolation Window (m/z): 0.7, Activation 772 

Type: CID), CID Collision Energy (%): 35, Activation Q: 0.25, Detector Type: Ion 773 

Trap, Scan Range Mode: Auto, m/z: Normal, Ion Trap Scan Rate: Turbo, AGC 774 

Target; 1.0e4, Max Inject Time (ms): 50, Microscans: 1, Data Type: Centroid) - 775 
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Precursor Selection Range (Mass Range: 400-1200) - Precursor Ion Exclusion 776 

(Exclusion mass width: m/z, Low: 18, High: 5) - Isobaric Tag Loss Exclusion 777 

(Reagent: TMT) - Decisions (Precursor Priority: Most Intense, Scan event type 1: No 778 

Condition) - ddMS3 OT HCD (Synchronous Precursor Selection: Yes, Number of 779 

Precursors: 10, MS Isolation Window: 0.7, Activation Type: HCD, HCD Collision 780 

Energy (%): 65, Detector Type: Orbitrap, Scan Range Mode: Define m/z range, 781 

Orbitrap Resolution: 60000, Scan Range (m/z): 100-500, AGC Target: 1.0e5, Max 782 

Inject Time (ms): 120, Microscans: 1, Data Type: Profile). Total run time was 120 783 

minutes. 784 

Data processing 785 

Raw data files were processed using Proteome Discoverer (v1.4.1.14, Thermo 786 

Fisher Scientific), interfaced with Mascot server (v.2.3.02, Matrix Science). Mascot 787 

searches were performed against the CyanoBase database, with 788 

carbamidomethylation of cysteine, and TMT 10-plex modification of lysine and 789 

peptide N termini set as modifications. Precursor and fragment ion tolerances of ±20 790 

p.p.m and ±0.1 Da were applied. Up to 2 missed tryptic cleavages were permitted. 791 

Proteins were reported with a FDR of 0.5%. 792 

TMT 10-plex quantification was also performed via Proteome Discoverer by 793 

calculating the sum of centroided ions within a ±2 mmu window around the expected 794 

m/z for each of the 10 TMT reporter ions. For protein-level reporting, protein 795 

grouping was enabled, and values were calculated from the median of all 796 

quantifiable peptide spectral matches (PSMs) for each group. TMT values were then 797 

reported as a ratio to the sum of reporters in each spectrum. 798 

Machine learning, multivariate analysis, and visualisation of data 799 

The Bioconductor (Gentleman et al., 2004) packages MSnbase (Gatto and Lilley, 800 

2012) and pRoloc (Gatto et al., 2014) for the R statistical programming language (R 801 

Core Team, 2013) were used for handling of the quantitative proteomics data and 802 

the protein-localisation prediction. pRolocGUI (Gatto et al., 2014) was employed for 803 

interactive visualisation of the data. Protein markers for the plasma membrane, 804 

thylakoid membrane, cytosol, and small and large ribosomal subunits were curated 805 

from a literature review (Supplemental Table S8). A Support Vector Machine (SVM) 806 

classifier was employed on the combined dataset, with a radial basis function kernel, 807 
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using class specific weights for classification of unassigned proteins to one of the 808 

five defined sub-cellular niches, TM, PM, soluble, small ribosomal subunit, large 809 

ribosomal subunit. The weights used in classification were set to be inversely 810 

proportional to the subcellular class frequencies to account for class imbalance. 811 

Algorithmic performance of the SVM on the dataset was estimated (as described in 812 

Trotter et al (Trotter et al., 2010)). Scoring thresholds were calculated per subcellular 813 

niche and were set based on concordance with existing subcellular knowledge 814 

annotation to attain a 7.5% false discovery rate (FDR). Unassigned proteins were 815 

then classified to 1 of the 5 compartments according to the SVM prediction if greater 816 

than the calculated class threshold.  817 

All protein level datasets are available in the R Bioconductor pRolocdata package 818 

(https://bioconductor.org/packages/pRolocdata version 1.19.2) and can be 819 

interactively explored using the pRolocGUI package 820 

(https://bioconductor.org/packages/pRolocGUI) or using the standalone online 821 

interactive app (https://lgatto.shinyapps.io/synechocystis/).  822 

The mass spectrometry data have been deposited to the ProteomeXchange 823 

Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE (Perez-824 

Riverol et al., 2019) partner repository with the dataset identifier PXD014662. 825 

 826 

Accession Numbers 827 

Gene/protein names, products and accession numbers of all genes/proteins 828 

identified in this study are listed in Supplemental Table S3 829 

 830 

Supplemental Data 831 

Supplemental Figures 832 

Supplemental Figure S1: Growth of Synechocystis under continuous moderate 833 

light (60 µmol photons m-2 s-1) with air-bubbling at 30°C. 834 

Supplemental Figure S2: Partial fractionation of Synechocystis by sucrose 835 

density ultracentrifugation. Lysed cells were fractionated based on the method by 836 

Schottkowski et al (Schottkowski et al., 2009) with modifications. The first biological 837 
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replicate is used as a representative example. A. Initial step sucrose gradient (left) 838 

producing fractions I-IV and their corresponding absorption spectra (right). Fractions 839 

I-III demonstrated similar absorption spectra. Only the heaviest fraction (IV) showed 840 

any detectable absorbance or protein content. Asterisk indicates the fraction (IV) 841 

carried forward; B. Continuous sucrose gradient (left) resulting in fractions 1-12 and 842 

their corresponding absorption spectra (right). The lightest fractions (1-5) showed 843 

peaks of varying intensity at approximately 620 nm, corresponding to an enrichment 844 

of phycocyanin, whilst the highest density fractions (8-12) showed peaks of differing 845 

intensities at approximately 430 and 680 nm, corresponding to chlorophyll a. 846 

Fractions 6-7 exhibited substantially less absorption across the spectrum; c. 847 

Continuous sucrose gradient (left) resulting in fractions 1-12 and the separation of 848 

proteins by SDS-PAGE (right), visualised by Instant Blue staining.  849 

Supplemental Figure S3: Comparison of assignment of proteins from this 850 

study with the Liberton et al (2016) data set between: A. Those found in the 851 

membranes in both studies and B. Those found in the soluble fraction in this 852 

study. Analysis of the data from the current study with that published by Liberton et 853 

al (Liberton et al., 2016) reveals some interesting observations about assignments to 854 

the plasma and thylakoid membranes in both studies. Liberton and co-workers 855 

presented their TM and PM in two different ways. Firstly in the ‘TM_PM Sig. Protein 856 

635.’ tab of supplementary table 1, they listed all TM or PM proteins assigned by 857 

virtue of their quantitative log2 iTRAQ ratios and an arbitrary cut off +/- log2 0.5 was 858 

chosen. These data we denote as Liberton_Full. Secondly, the authors provided 859 

additional reduced lists, Top_TM and Top_PM, where a more stringent but equally 860 

arbitrary cut off of log2 +/- 2.0 was employed resulting in a list of 83 TM and 89 PM 861 

proteins. When comparing the full list with the data presented here, it is interesting to 862 

note that very few of Liberton’s PM proteins were assigned as TM in this study and 863 

even fewer TM proteins assigned as PM, showing consistency between the 864 

membranes to which they have been assignments and the results presented in this 865 

study. There is only limited overlap between TM assignments and PM assignments, 866 

however, between the two studies. This is in part due to the fact that different 867 

proteins were identified in both studies. It is most likely due to the fact that the study 868 

presented here represents the whole cell, whereas the Liberton study analysed only 869 

a subset of proteins. It is not clear whether the additional PM and TM proteins 870 
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presented in the Liberton study represent contamination of their TM and PM 871 

enriched fractions with proteins from other parts of the cell, or the fact that this study 872 

returns the steady state location of proteins and hence if a TM and PM protein is also 873 

elsewhere in the cell, this study would flag it up as ‘mixed location’. It is interesting to 874 

note that there is some overlap with Liberton’s TM and particularly PM data with the 875 

soluble assignments in the data presented here. Analysis of these proteins shows 876 

that only 7% have a predicted single TMD and the remainder have no predicted 877 

membrane spanning regions.   878 

Supplemental Figure S4: Carotenoid biosynthesis in Synechocystis. 879 

Carotenoids that accumulate in the cell are highlighted in red. Uncharacterised 880 

biosynthetic steps are indicated by broken arrows. Cellular location of proteins is 881 

indicated by the colour of the box surrounding the protein name: Yellow- TM; Blue- 882 

PM; Orange- soluble; Black- Unclassified.  883 

Supplemental Figure S5: Distribution of carboxysome subunits and internal 884 

proteins in the PCA plot. Shell proteins of the carboxysome are localised 885 

predominantly in the soluble fraction (CcmAK1234LO) with the exception of CcmM 886 

(PM) and CcmN (unclassified). The carbonic anhydrase (CcaA) and RuBisCo 887 

subunits (RbcS, RbcL) are also in unclassified regions of the PCA plot.  888 

Supplemental Figure S6: Alignment of Rps1A subunits from sequenced 889 

cyanobacterial species. 890 

Supplemental Figure S7: Alignment of Rps1B subunits from sequenced 891 

cyanobacterial species. This protein is not conserved in Gloeobacter kilaueensis 892 

JS1 and Gloeobacter violaceus PCC 7421. 893 

Supplemental Figure S8: Comparison of the TM and PM proteomes in terms of 894 

their functional categories. Proteins are classified into functional categories 895 

according to CyanoBase. 896 

 897 

Supplementary Tables 898 

Supplemental Table S1. Large-scale proteomic studies of Synechocystis. 899 

Comparative analysis was used to investigate responses to environmental changes, 900 
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whilst a targeted approach focuses on a specific cellular sub-region without changing 901 

environmental parameters. Gel-based: proteins separated by PAGE; Shotgun: 902 

proteins digested in solution, with peptides separated by fractionation; iTRAQ: 903 

peptides labelled with isobaric tags for relative and absolute quantification. 904 

Supplemental Table S2: TMT quantitation data for two LOPIT replicate 905 

experiments and length, weight and pI of proteins identified.  906 

Supplemental Table S3: Proteins identified in both replicates, the predicted 907 

localisations of proteins in Synechocystis by machine learning, using marker 908 

proteins as a training set. Protein size and the number of transmembrane 909 

helical domains (TMHs) present is also listed. 910 

Supplemental Table S4: Proteins identified in this study and the one performed 911 

by Spat et al (2018) 912 

Supplemental Table S5: Proteins identified in this study but not the one 913 

performed by Spat et al (2018) 914 

Supplemental Table S6: Proteins not identified in this study but identified in 915 

the one performed by Spat et al (2018) 916 

Supplemental Table S7: Proteins not identified in this study or in the one 917 

performed by Spat et al (2018)  918 

Supplemental Table S8: Marker proteins used to identify subcellular regions. 919 

Supplemental Table S9: Comparison of the localisation of Arabidopsis 920 

chloroplast envelope and thylakoid membrane proteins with homologs in 921 

Synechocystis. Excluded are proteins from the PSI, PSII, cyt b6f, ATP synthase and 922 

NDH complexes, all of which are TM localised in both species. 923 

Supplemental Table S10: BLAST analysis of uncharacterized Synechocystis 924 

TM localised proteins. Sequence similarity with proteins in Chlamydomonas 925 

reinhardtii and Arabidopsis thaliana are shown. Proteins highlighted in red are highly 926 

conserved in all three species. 927 

 928 
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 937 

Figure Legends  938 

Figure 1: The ultrastructure of Synechocystis showing various subcellular 939 

components. L: Lipid body; C: Carboxysome; PHB: Polyhydroxybutyrate granule; 940 

PP: Polyphosphate body; Glyc: Glycogen granule; Cyano: Cyanophycin granule. 941 

SEMs taken from Van de Meene et al. Membrane-like structure in close 942 

association with ribosomes (black arrow head) and seemingly continuous with TM 943 

(white arrow head). Convergence site of the PM and TM (white arrow). Bar = 50 944 

nm. 945 

Figure 2: Structural similarities between cyanobacteria and chloroplasts. 946 

Schematic depictions of the similar membrane organisation within a cyanobacterial 947 

cell and chloroplast. 948 

Figure 3: Outline of the proteomic workflow. A. Total protein was extracted from 949 

each of the gradient fractions and quantified. B. The different distributions of TM and 950 

PM, as indicated by immunoblot analysis using antibodies against TM (CP47) and 951 

PM (SbtA) specific marker proteins C. Fractions 1-2 and 11-12 were merged to yield 952 

10 gradient fractions and each labelled with a different tag using a 10-plex TMT kit. 953 

These fractions were merged as they exhibited similar protein profiles according to 954 

SDS-PAGE and immunoblot analysis. D. RP-HPLC was used to separate the 955 

proteins according to their hydrophobicity. E. This provided better resolution before 956 

subsequent MS/MS analysis. Proteins were identified by comparison to the database 957 

held by CyanoBase, and quantified using Proteome Discoverer Software 1.4.1.14 958 

(Thermo Fisher Scientific). 959 
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Figure 4: Principal component analysis plots. A. Principal component analysis of 960 

the combined biological replicates. B. PCA plot showing the location of protein 961 

markers. C. PCA plot showing the assignment of proteins to subcellular regions. A 962 

cut-off of 0.75 (corresponding to 75%) was used for the boundaries of the TM, PM, 963 

small and large ribosomal subunits, and 0.65 for the soluble proteins. Grey circles 964 

indicate proteins with an unclassified localisation. D. Integral membrane proteins 965 

highlighted on the PCA plot of combined datasets. 966 

Figure 5: Clustering of proteins with similar functions indicates potential 967 

further subcellular regions and compartmentalization. A. Two distinct sub-968 

clusters of transport and binding proteins can be seen within the PM region. The 969 

smaller of these two groups is in close proximity to FtsZ, which forms the septal ring, 970 

and the MinCDE proteins which control the position and shape of the spectral ring; 971 

B. Sub-clustering of certain large ribosomal subunit proteins was observed, in close 972 

association with PBP1-3 to the PM region. The location of PBP4-8 are shown; C. 973 

Proteins thought to reside in the OM were found to localise to a distinct and 974 

unclassified region in between the PM and TM regions. Proteins involved in PHB 975 

biosynthesis are highlighted in purple; D. Numerous proteins which form complexes 976 

were found in very close proximity to each other on the PCA plot. 977 

Figure 6: Predicted localization of proteins and biosynthetic pathways in 978 

Synechocystis. Enzymatic steps within a pathway which are localized to different 979 

regions of the cell are separated into appropriate colours/styles. Green: TM; Brown: 980 

PM; Solid line: Soluble; Broken line: Unclassified. TCA cycle: Tricarboxylic cycle; 981 

PPP: Pentose phosphate pathway; Flv 1/3: Flavodiiron protein 1/3. Refer to 982 

Supplemental Table S3 for protein abbreviations. 983 

Figure 7: Schematic diagram detailing biosynthesis of lipopolysaccharides 984 

(LPSs) and assembly and polymerization of peptidoglycan (PG) monomers. 985 

LpxACDB enzymes synthesize the LPS disaccharide precursor. In E. coli, the 986 

flippase MsbA transfers the disaccharide to the periplasmic side of the PM, although 987 

the cyanobacterial MsbA has not been identified. RfbJUW are hypothesised to 988 

glycosylate the disaccharide. The LPS is transported to the OM by an 989 

uncharacterized protein complex. PG monomers are synthesised by MurABCDEFG 990 

and MraY enzymes. Localisation of MraY and murG in the TM suggests that the 991 
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monomers are subsequently transported to the PM, where the flippase, MurJ, 992 

transfers the monomers to the periplasmic side. Penicillin binding proteins Pbp1-4 993 

and FtsW are involved in PG polymerization, while Pbp5-8 are likely involved in PG 994 

depolymerisation. A question mark indicates uncharacterized processes.  995 

Figure 8: Schematic diagram detailing localisation of the electron transport 996 

complexes in cyanobacteria. Shown are the thylakoid membrane (A) 997 

photosynthetic and (B) respiratory electron transport chains, and the (C) plasma 998 

membrane electron transport chain. PSII- Photosystem II, PQ- plastoquinone, HemJ- 999 

protoporphyrinogen IX oxidase, cyt b6f- cytochrome b6f, Pc- plastocyanin, PSI- 1000 

Photosystem I, Fd- ferredoxin, FNR- ferredoxin-NADP+-reductase, NDH-1- NDH 1001 

dehydrogenase 1, SDH- Succinate dehydrogenase, Cyd- bd-quinol oxidase, COX- 1002 

cytochrome-c oxidase, NdhB- NAD(P)H dehydrogenase 2 B, NdbC- NAD(P)H 1003 

dehydrogenase 2 C, MenG- Demethylphyloquinone methyltransferase, PyrD- 1004 

Dihydroorotate dehydrogenase, ARTO- Alternative respiratory terminal oxidase. Also 1005 

shown are the PSII assembly proteins RubA (Rubredoxin A), Ycf48 and Ycf39 and 1006 

the putative PSI assembly proteins Ycf4 and Ycf37. Localisation of SDH in the PM 1007 

has not been confirmed. Dotted lines indicate possible electron transport routes. 1008 

  1009 
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