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Abstract
Absorption spectroscopy is widely used to determine absorption and transmission spectra of chromophores in solution, in 
addition to suspensions of particles, including micro-organisms. Light scattering, caused by photons deflected from part 
or all of the cells or other particles in suspension, results in distortions to the absorption spectra, lost information and poor 
resolution. A spectrophotometer with an integrating sphere may be used to alleviate this problem. However, these instru-
ments are not universally available in biology laboratories, for reasons such as cost. Here, we describe a novel, rapid, and 
inexpensive technique that minimises the effect of light scattering when performing whole-cell spectroscopy. This method 
involves using a custom made dual compartment cuvette containing titanium dioxide in one chamber as a scattering agent. 
Measurements were conducted of a range of different photosynthetic micro-organisms of varying cell size and morphology, 
including cyanobacteria, eukaryotic microalgae and a purple non-sulphur bacterium. A concentration of 1 mg ml−1 titanium 
dioxide, using a spectrophotometer with a slit width of 5 nm, produced spectra for cyanobacteria and microalgae similar 
(1–4% difference) to those obtained using an integrating sphere. The spectrum > 520 nm was similar to that with an integrat-
ing sphere with the purple non-sulphur bacterium. This system produced superior results to those obtained using a recently 
reported method, the application of the diffusing agent, Scotch™ Magic tape, to the side of the cuvette. The protocol can be 
completed in an equivalent period of time to standard whole-cell absorbance spectroscopy techniques, and is, in principle, 
suitable for any dual-beam spectrophotometer.
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Introduction

Optical absorption spectroscopy is a technique used to deter-
mine how solutions and particles in suspension interact with 
specific wavelengths of light. It is widely applied to a range 
of biological and chemical suspensions and is especially 
useful in determining the pigment composition of photo-
synthetic organisms (Merzlyak et al. 2008). However, the 
apparent absorbance of a suspension at a given wavelength 
depends not only on the actual absorbance but also on the 
scattering of light by particles and structures present in the 
suspension (Castanho et al. 1997; Latimer and Eubanks 
1962; Merzlyak et al. 2008; Merzlyak and Naqvi 2000; 
Naqvi et al. 2004; Prado et al. 1996; Twersky 1970). The 
consequences of scattering are complex and depend on the 
specific wavelength examined, and the size, shape, and struc-
ture of the individual particles in suspension (Latimer and 
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Eubanks 1962; Merzlyak et al. 2008; Ritchie and Sma-Air 
2020a; Twersky 1970). This distorts the absorption measure-
ments, as a portion of the signal recorded will be due to the 
variable scattering effect, rather than the absorption of light 
(Latimer and Eubanks 1962; Merzlyak et al. 2008; Mer-
zlyak and Naqvi 2000; Naqvi et al. 2004; Twersky 1970). 
This problem has been widely studied, and various methods 
have been proposed to correct for the light scattered (Jack-
son et al. 2014; Latimer and Eubanks 1962; Merzlyak and 
Naqvi 2000; Naqvi et al. 2004; Shibata et al. 1954; Smith 
et al. 1957). Ideally, an integrating sphere is used, in order 
to collect all of the scattered light at the detector (Latimer 
and Eubanks 1962; Merzlyak and Naqvi 2000; Ritchie and 
Sma-Air 2020a, b). Spectrophotometers incorporating inte-
grating sphere detectors are specialised pieces of equipment 
and too costly for many research laboratories. Therefore, 
other techniques to correct for scattering have been devel-
oped. Commonly, these utilise a diffuser on the front of the 
cuvette to scatter uniformly the beam coming from the light 
source (Jackson et al. 2014; Shibata et al. 1954; Smith et al. 
1957). Scattering introduced by the diffuser is much greater 
than the scattering from the sample, so the scattering from 
the sample becomes negligible and is no longer apparent in 
the recorded spectra. In 1954, Shibata et al. (1954) proposed 
the use of filter paper dipped in paraffin wax as a diffuser 
and in 1957, Smith et al. refined the method by exchanging 
the waxed paper for opalescent glass (Smith et al. 1957). 
More recently, opaque tape such as Scotch™ Magic tape 
has been used as a diffuser (Jackson et al. 2014). However, 
many of these diffusing agents are not easily standardised, so 
results may vary from experiment to experiment, and from 
lab to lab; this makes reporting and reproduction of results 
difficult.

In this study, we outline a new diffuser system for the 
correction of scattering in biological suspensions, that is 
easily standardised, inexpensive, and produces accurate and 

reproducible results comparable to data obtained using an 
integrating sphere. This technique utilises custom built dual-
compartment cuvettes, manufactured by Starna Scientific, in 
which scattering is corrected via a suspension of titanium 
dioxide. These cuvettes can be used in standard dual beam 
spectrophotometers, making this technique accessible to 
the majority of biological laboratories. Figure 1 depicts the 
details of the dual-compartment cuvettes and their use in a 
dual-beam spectrophotometer. Titanium dioxide is used, as 
it is widely available and inexpensive, and forms an opaque, 
scattering suspension in water. Importantly, titanium dioxide 
can be standardised with respect to particle size and con-
centration, thus making it suitable as an easily standardised 
and reproducible diffuser. We demonstrate that this system 
is superior to using Scotch™ Magic tape as the diffuser, 
producing results comparable to data collected using an inte-
grating sphere detector.

Materials and methods

Culture medium and growth conditions

Synechocystis sp. PCC 6803 (Synechocystis) strains were 
cultured in BG11 medium at 30  °C. Chlorella vulgaris 
CCAP 211/52 (Chlorella) and Chlamydomonas rein-
hardtii CC 1021 (Chlamydomonas) strains were cultured 
in standard TP medium at 30 °C. Synechococcus sp. PCC 
7002 (Synechococcus) and Dunaliella salina CCAP 19/12 
(Dunaliella) were grown in artificial salt water medium 
(ASW) at 25 °C. Rhodopseudomonas palustris CGA009 
(Rhodopseudomonas) was grown in a minimal salts medium, 
supplemented with 10 mM urea and 50 mM glycerol. All of 
these strains were cultured in an illuminated incubator with 
continuous shaking (125 rpm) and light (~ 50 µE m−2 s−1).

Fig. 1   Design and use of the custom, two chamber cuvette. a Diagram of the device detailing the compartments for inclusion of a sample and a 
scattering agent; b Diagram detailing use of the cuvette in a dual-beam spectrophotometer
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Spectrophotometric methods

One set of spectra was recorded in a Shimadzu UV-2600 
spectrophotometer, with a slit width of 5 nm. Reference 
spectra were recorded using the same device with an add-
on ISR-2600Plus two-detector integrating sphere, with 
a slit width of 5 nm. A second set of data were collected 
using a Shimadzu UV-1800 spectrophotometer, which has 
a slit width of 1 nm. These data were compared to reference 
spectra collected in the Shimadzu UV-2600 with the add-on 
ISR-2600Plus two-detector integrating sphere, with the slit 
width set to 1 nm. All experiments were conducted at room 
temperature.

Dual compartment cuvette measurements 
with titanium dioxide

Two quartz cuvettes were used in the dual-beam spectro-
photometer. In these customized cuvettes, the chamber is 
divided into two compartments, each with an optical path 
of 5 mm (Fig. 1). The cuvettes were orientated so that the 
investigation beam passed through both chambers. A base-
line reading was taken with blank growth medium in one 
chamber of both cuvettes (i.e., the sample and the reference 
cuvettes) and a premixed suspension of titanium dioxide 
(Sigma-Aldrich, Titanium IV oxide, anatase, -325 mesh) in 
water in the other chamber (Fig. 1). The titanium dioxide 
suspension was placed in the chamber closer to the light 
source, such that the beam passed through the suspension 
before passing through the sample. The spectrophotometer 
was zeroed with this setup by recording a baseline cor-
rection. The cuvette was inverted several times each time 
a new sample was measured, to ensure that the titanium 
dioxide remained in suspension and did not settle. The 
concentrations of titanium dioxide used were 0.1, 0.2, 0.5 
and 1 mg ml−1. To record a spectrum, the titanium dioxide 
suspension was left in place in both cuvettes, but the blank 

medium in the sample cuvette was replaced with the sample 
(e.g., microalgal cell suspension). For the reference spectra 
recorded using the integrating sphere detector, the titanium 
dioxide suspension was replaced with water. This way the 
path length of the sample was the same as that used for the 
other samples. Three technical replicate measurements were 
taken for each sample.

Single compartment cuvette measurements 
with Scotch™ Magic tape

Two standard, single-compartment, quartz cuvettes were 
used in the dual-beam spectrophotometer. These cuvettes 
had 0, 1, 5, or 10 layers of Scotch™ Magic tape applied to 
the side of the cuvette that was closer to the light source, 
such that the investigation beam passed through the tape 
before passing through the sample. Adding more than 10 lay-
ers resulted in a cuvette unable to fit in the spectrophotom-
eter. Prior to analysis of samples, the spectrophotometer was 
zeroed, and a baseline recorded, with blank medium in both 
cuvettes. To record a spectrum, the blank medium in the 
sample cuvette was replaced with the sample (e.g., microal-
gal cell suspension). For the reference spectra recorded using 
the integrating sphere detector, the tape was removed from 
the cuvettes. Three technical replicate measurements were 
taken for each sample.

Results

To determine the absorption profile of a range of photo-
synthetic organisms we analysed two cyanobacterial spe-
cies (Synechocystis and Synechococcus), a non-sulphur 
purple bacterium (Rhodopseudomonas) and three eukar-
yotic microalgal species (Chlorella, Chlamydomonas, 
Dunaliella). Species were selected based on differences in 
size and shape, which are outlined in Table 1. In addition, a 

Table 1   Species examined in this study

Size refers to the diameter in spherical cells and length/width in ovoid and rod shaped cells. Optical density is given at time of measurement at 
standard wavelengths

Species Shape Size (µm) References OD660 OD730 OD750

Synechocystis sp. PCC 6803 Spherical 2.02–2.06 Hayashi et al. (1982) and 
Lea-Smith et al. (2014)

0.75 0.61 0.57

Synechocystis sp. PCC 6803- Olive Spherical 1.82 Lea-Smith et al. (2014) 0.33 0.27 0.25
Synechococcus sp. PCC 7002 Ovoid 2.30/1.61 Lea-Smith et al. (2016) 0.38 0.30 0.28
Chlorella vulgaris CCAP 211/52 Spherical 3 le Grooth et al. (1985) 0.74 0.73 0.69
Dunaliella salina CCAP 19/12 Ovoid 5–10 Preetha et al. (2012) 0.66 0.65 0.64
Chlamydomonas reinhardtii CC1021 Spherical 10 Ratcliff et al. (2013) 0.19 0.20 0.20
Chlamydomonas reinhardtii CW15 Spherical 10 Davies and Plaskitt (1971) 

and Ratcliff et al. (2013)
0.34 0.38 0.37

Rhodopseudomonas palustris CGA009 Rod 2/0.5 van Niel (1944) 0.35 0.29 0.28
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Synechocystis (‘Olive’) mutant lacking the phycocyanin por-
tion (λmax = 625 nm) of the light harvesting phycobilisome 
complex and whose cells are smaller than wild-type (Lea-
Smith et al. 2014), and a cell wall deficient Chlamydomonas 
strain (CW15) (Davies and Plaskitt 1971), were also tested.

Analysis of the absorption spectra of strains using 
the dual compartment cuvette with titanium 
dioxide

We first analysed the absorption profile of all the strains 
using a spectrophotometer with an integrating sphere detec-
tor and a slit width of 5 nm. The same samples were then 
examined using the dual chamber cuvette system with no 
titanium dioxide or different concentrations between 0.1 
and 1 mg ml−1. The raw data (Fig. S1) were analysed in the 
region 400–750 nm, except for R. palustris where the range 
was from 400 to 900 nm. Each spectrum was normalised 
such that the maximum absorbance value recorded was made 
equal to 1. This was achieved by dividing every point of 

the curve by the maximum absorbance value measured in 
the considered interval. This normalisation permits a direct 
comparison of spectra derived from samples with various 
cell densities (Fig. 2).

When titanium dioxide at 1 mg ml−1 was used, the spec-
tra of each of the cyanobacterial and microalgal species 
were similar to the profile obtained using the integrating 
sphere, in terms of both the magnitude and the overall shape. 
When titanium dioxide at 0.5 mg ml−1 was used, the spec-
tral profiles were similar from 400 to 680 nm but diverged 
between 680 and 750 nm. (The spectral profiles were less 
similar for the C. reinhardtii strains.) This concentration is 
therefore unsuitable for most applications since this part of 
the spectrum includes absorption from chlorophyll a. The 
Rhodopseudomonas profile (Fig. 2) was similar between the 
results obtained using the integrating sphere and the dual 
chamber cuvette system when titanium dioxide was used 
at 1 mg ml−1, except below < 520 and > 920 nm. Therefore, 
this technique would be suitable for analysing absorption of 
the main pigments in this species in the infrared part of the 

Fig. 2   Comparison of whole-cell absorbance spectra with the dual 
compartment cuvette (slit width 5 nm). Samples were analysed using 
the integrating sphere (black) or in the dual compartment cuvette with 

0 (red), 0.1 (purple), 0.2 (green), 0.5 (yellow) or 1 (orange) mg ml−1 
TiO2. Results are standardised as described in the text. The mean of 
three samples is displayed
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spectrum, specifically bacteriochlorophyll a (λmax = 803 nm) 
and b (λmax = 860 nm) (Merzlyak et al. 2008). Optical den-
sity of the culture did not appear to have a noticeable effect 
on the optimum concentration of TiO2. Table 1 shows the 
optical density of each culture, at standard wavelengths, and 
includes a range from 0.2 to 0.8, which covers the stand-
ard range that would reasonably be used in these types of 
measurements.

We then analysed all strains using a spectrophotometer 
with an integrating sphere detector and a slit width of 1 nm, 
followed by the dual chamber cuvette system with no tita-
nium dioxide or 1 mg ml−1 (Fig. S2; Fig. 3). The spectral 
profiles of all strains were similar between those analysed 
using the integrating sphere and the dual chamber cuvette 
system with titanium dioxide at 1 mg ml−1. However, with 
the exception of Rhodopseudomonas, variation between 
replicates was higher between 400 and 500 nm compared 
to samples examined using the spectrophotometer with a 
slit width of 5 nm. This is likely to be due to an increase 
in noise as a result of the reduced radiant energy at these 

wavelengths, so the use of a slit width of 5 nm rather than 
1 nm alleviates this concern.

Analysis of the absorption spectra of strains using 
the single compartment cuvette with Scotch™ Magic 
tape

Next we performed a comparison of this method with one 
previously reported, the coating of a single chamber cuvette 
with Scotch™ Magic tape (Jackson et al. 2014). The sam-
ples were analysed in a spectrophotometer with a slit width 
of 5 nm (Fig. S3; Fig. 4) or 1 nm (Fig. S4; Fig. 5), with 
different numbers of layers of Scotch™ Magic tape. With 
a slit width of 5 nm, adding even one layer of tape mark-
edly changed the profile compared to analysing the sam-
ple using the cuvette only. However, the profile of none of 
the samples measured with either 1, 5 or 10 layers of tape 
resembled closely the profile across the spectrum obtained 
using the integrating sphere. Surprisingly, when using the 
spectrophotometer with the slit width of 1 nm, there was 

Fig. 3   Comparison of whole-cell absorbance spectra with the dual 
compartment cuvette (slit width 1 nm). Samples were analysed using 
the integrating sphere (black) or in the dual compartment cuvette 

with 0 (red) or 1 (orange) mg ml−1 TiO2. Results are standardised as 
described in the text. The mean of three samples is displayed
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little difference in the profile of samples between the cuvette 
only and the cuvette with ten layers of tape, with the excep-
tion of Dunaliella.

Analysis of absorbance is optimal using the dual 
compartment cuvette with 1 mg ml−1 titanium 
dioxide in a spectrophotometer with a slit width 
of 5 nm

Finally, we determined the average difference across the 
spectrum (400–750  nm for cyanobacteria/microalgae; 
400–900 nm for Rhodopseudomonas) between the differ-
ent methods compared to the reference spectra collected 
with the integrating sphere (Fig. 6; Fig. S5). For all species, 
1 mg ml−1 titanium dioxide in a dual compartment cuvette 
in a spectrophotometer with a slit width of 5 nm was the 
optimal method. Using a spectrophotometer with a slit width 
of 1 nm resulted in spectra more comparable to the reference 
than using a single compartment cuvette with layers of tape.

Discussion

In this study, we tested seven microorganisms ranging 
in diameter from 2 to 10 µm using two different scatter-
ing agents. Overall, we showed that the two-compart-
ment cuvette system with titanium dioxide can be used 
to obtain accurate absorption measurements, unhindered 
by the effects of light scattering, in standard dual-beam 
spectrophotometers, without an integrating sphere. This 
method should be easily replicated between different labo-
ratories, since the concentration and particle size of the 
titanium dioxide are known and consistent. Increasing the 
concentration of titanium dioxide brought the measured 
spectra closer to the reference spectra in every case. Using 
a titanium dioxide concentration of 1 mg ml−1 resulted 
in spectra very similar to those collected using an inte-
grating sphere, suggesting that this is the optimum con-
centration for the diffuser. Increasing the concentration 
of titanium dioxide further would not be beneficial, since 
the recorded spectra already matched the reference spectra 

Fig. 4   Comparison of whole-cell absorbance spectra with Scotch™ 
Magic tape (slit width 5 nm). Samples were analysed using the inte-
grating sphere (black) or in the single compartment cuvette coated 

with 0 (red), 1 (green), 5 (yellow) or 10 (orange) pieces of Scotch™ 
Magic tape. Results are standardised as described in the text. The 
mean of three samples is displayed
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almost perfectly, and the increased opacity from higher 
concentrations would only serve to reduce the signal that 
could be measured.

This method offers several advantages compared to those 
using waxed paper (Shibata et al. 1954), opalescent glass 
(Smith et al. 1957), or tape (Jackson et al. 2014) as the scat-
tering diffuser. First, the spectra collected are similar to the 
reference spectra collected using the integrating sphere. 
Secondly, as previously mentioned, it is easily standardised 
and replicated across different laboratories and experiments. 
Thirdly, the method can be easily modified to change the 
scattering effect, by altering the concentration of titanium 
dioxide used. Finally, whilst customised cuvettes are needed, 
they can be used in any standard dual-beam spectrophotom-
eter without modification, although a device with a slit width 
of 5 nm is optimal. Adding tape or other diffusers to the 
side of an existing cuvette add to its size, and can result in 
problems fitting the cuvette into the spectrophotometer. This 
method is therefore applicable to whole-cell spectroscopy of 
organisms and could potentially be applied to other opaque 

Fig. 5   Comparison of whole-cell absorbance spectra with Scotch™ 
Magic tape (slit width 1 nm). Samples were analysed using the inte-
grating sphere (black) or in the single compartment cuvette coated 

with 0 (red) or 10 (orange) pieces of Scotch™ Magic tape. Results 
are standardised as described in the text. The mean of three samples 
is displayed

Fig. 6   Average difference across the spectrum (400–750  nm (400–
900 nm for R. palustris)) between data obtained using the integrating 
sphere and the dual compartment/TiO2 and single compartment/tape 
systems. The figure shows the result most similar to the integrating 
sphere from among the replicate experiments conducted using the 
dual compartment/TiO2 system with a slit width of 5  nm (red) and 
1 nm (blue), and the single compartment/tape system with a slit width 
of 5 nm (green) and 1 nm (purple)
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or suspended samples currently analysed using a spectro-
photometer with an integrating sphere.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11120-​021-​00866-8.
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