4 research outputs found

    Lysates of Methylococcus capsulatus Bath induce a lean-like microbiota, intestinal FoxP3+RORγt+IL-17+ Tregs and improve metabolism

    Get PDF
    Interactions between host and gut microbial communities are modulated by diets and play pivotal roles in immunological homeostasis and health. We show that exchanging the protein source in a high fat, high sugar, westernized diet from casein to whole-cell lysates of the non-commensal bacterium Methylococcus capsulatus Bath is sufficient to reverse western diet-induced changes in the gut microbiota to a state resembling that of lean, low fat diet-fed mice, both under mild thermal stress (T22 °C) and at thermoneutrality (T30 °C). Concomitant with microbiota changes, mice fed the Methylococcus-based western diet exhibit improved glucose regulation, reduced body and liver fat, and diminished hepatic immune infiltration. Intake of the Methylococcu-based diet markedly boosts Parabacteroides abundances in a manner depending on adaptive immunity, and upregulates triple positive (Foxp3+RORγt+IL-17+) regulatory T cells in the small and large intestine. Collectively, these data point to the potential for leveraging the use of McB lysates to improve immunometabolic homeostasis.publishedVersio

    Ancestral wheat types release fewer celiac disease related t cell epitopes than common wheat upon ex vivo human gastrointestinal digestion

    Get PDF
    Celiac disease (CeD) is an autoimmune enteropathy triggered by immunogenic gluten peptides released during the gastrointestinal digestion of wheat. Our aim was to identify T cell epitope-containing peptides after ex vivo digestion of ancestral (einkorn, spelt and emmer) and common (hexaploid) wheat (Fram, Bastian, Børsum and Mirakel) using human gastrointestinal juices. Wheat porridge was digested using a static ex vivo model. Peptides released after 240 min of digestion were analyzed by liquid chromatography coupled to high-resolution mass spectrometry (HPLC-ESI MS/MS). Ex vivo digestion released fewer T cell epitope-containing peptides from the ancestral wheat varieties (einkorn (n = 38), spelt (n = 45) and emmer (n = 68)) compared to the common wheat varieties (Fram (n = 72), Børsum (n = 99), Bastian (n = 155) and Mirakel (n = 144)). Neither the immunodominant 33mer and 25mer α-gliadin peptides, nor the 26mer γ-gliadin peptide, were found in any of the digested wheat types. In conclusion, human digestive juice was able to digest the 33mer and 25mer α-gliadin, and the 26mer γ-gliadin derived peptides, while their fragments still contained naive T cell reactive epitopes. Although ancestral wheat released fewer immunogenic peptides after human digestion ex vivo, they are still highly toxic to celiac patients. More general use of these ancient wheat variants may, nevertheless, reduce CeD incidence
    corecore