1,901 research outputs found

    The implementation of a home-based isometric wall squat intervention using ratings of perceived exertion to select and control exercise intensity: a pilot study in normotensive and pre-hypertensive adults.

    Get PDF
    Isometric exercise (IE) and isometric wall squat (IWS) training have been shown to be effective methods of reducing arterial blood pressure. However, most IE interventions require methodologies and equipment that could present a barrier to participation. Therefore, this study aimed to examine the effectiveness of an accessible RPE prescribed IWS intervention. Thirty normotensive and pre-hypertensive adults were randomly assigned to a control group or one of two 4-week home-based IWS intervention groups: the first group conducted IWS exercise where intensity was prescribed and monitored using RPE (RPE-EX), whilst the other used a previously validated HR prescription method (HR-EX). Resting and ambulatory heart rate (HR) and blood pressure (BP) were measured pre- and post-intervention. Minimum clinically important differences (MCID; - 5 mmHg) in SBP and/or DBP were shown in 100% of intervention participants. Statistically significant reductions were shown in resting seated BP (RPE-EX: SBP: - 9 ± 6, DBP: - 6 ± 4, MAP: - 6 ± 3 mmHg; HR-EX: SBP: - 14 ± 6, DBP: - 6 ± 4, MAP: - 8 ± 4 mmHg), supine BP (RPE-EX: SBP: - 8 (- 5), DBP: - 8 (- 7), MAP: - 8 (- 4) mmHg; HR-EX: SBP: - 5 (- 4), MAP - 5 (- 4) mmHg), and ambulatory SBP (RPE-EX: - 8 ± 6 mmHg; HR-EX: - 10 ± 4 mmHg) following the interventions. There were no statistically significant differences between intervention groups in the magnitude of BP reduction. RPE prescribed IWS exercise can provide an effective and more accessible method for reducing BP at home, providing reductions comparable to the current HR-based prescription method. [Abstract copyright: © 2023. The Author(s).

    The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets

    Get PDF
    The size of a planet is an observable property directly connected to the physics of its formation and evolution. We used precise radius measurements from the California-Kepler Survey (CKS) to study the size distribution of 2025 Kepler\textit{Kepler} planets in fine detail. We detect a factor of ≥\geq2 deficit in the occurrence rate distribution at 1.5-2.0 R⊕_{\oplus}. This gap splits the population of close-in (PP < 100 d) small planets into two size regimes: RP_P < 1.5 R⊕_{\oplus} and RP_P = 2.0-3.0 R⊕_{\oplus}, with few planets in between. Planets in these two regimes have nearly the same intrinsic frequency based on occurrence measurements that account for planet detection efficiencies. The paucity of planets between 1.5 and 2.0 R⊕_{\oplus} supports the emerging picture that close-in planets smaller than Neptune are composed of rocky cores measuring 1.5 R⊕_{\oplus} or smaller with varying amounts of low-density gas that determine their total sizes.Comment: Paper III in the California-Kepler Survey series, accepted to the Astronomical Journa

    The California-Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars

    Get PDF
    We present stellar and planetary properties for 1305 Kepler Objects of Interest (KOIs) hosting 2025 planet candidates observed as part of the California-Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetary radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.Comment: 13 pages, 4 figures, 4 tables, accepted for publication in AJ; full versions of tables 3 and 4 are include

    The California-Kepler Survey. I. High Resolution Spectroscopy of 1305 Stars Hosting Kepler Transiting Planets

    Get PDF
    The California-Kepler Survey (CKS) is an observational program to improve our knowledge of the properties of stars found to host transiting planets by NASA's Kepler Mission. The improvement stems from new high-resolution optical spectra obtained using HIRES at the W. M. Keck Observatory. The CKS stellar sample comprises 1305 stars classified as Kepler Objects of Interest, hosting a total of 2075 transiting planets. The primary sample is magnitude-limited (Kp < 14.2) and contains 960 stars with 1385 planets. The sample was extended to include some fainter stars that host multiple planets, ultra short period planets, or habitable zone planets. The spectroscopic parameters were determined with two different codes, one based on template matching and the other on direct spectral synthesis using radiative transfer. We demonstrate a precision of 60 K in effective temperature, 0.10 dex in surface gravity, 0.04 dex in [Fe/H], and 1.0 km/s in projected rotational velocity. In this paper we describe the CKS project and present a uniform catalog of spectroscopic parameters. Subsequent papers in this series present catalogs of derived stellar properties such as mass, radius and age; revised planet properties; and statistical explorations of the ensemble. CKS is the largest survey to determine the properties of Kepler stars using a uniform set of high-resolution, high signal-to-noise ratio spectra. The HIRES spectra are available to the community for independent analyses.Comment: 20 pages, 19 figures, accepted for publication in AJ; a full version of Table 5 is included as tab_cks.csv and tab_cks.te

    Working with simple machines

    Get PDF
    A set of examples is provided that illustrate the use of work as applied to simple machines. The ramp, pulley, lever and hydraulic press are common experiences in the life of a student and their theoretical analysis therefore makes the abstract concept of work more real. The mechanical advantage of each of these systems is also discussed so that students can evaluate their usefulness as machines.Comment: 9 pages, 4 figure

    Australia\u27s health 1992 : the third biennial report of the Australian Institute of Health and Welfare

    Full text link
    Australia\u27s Health is the most comprehensive and authoritative source of national information on health in Australia. Australia\u27s Health is published mid-year in even-numbered years and provides national statistics and related information that form a record of health status, service provision and expenditure in Australia

    Four sub-Saturns with dissimilar densities: windows into planetary cores and envelopes

    Get PDF
    We present results from a Keck/HIRES radial velocity campaign to study four sub-Saturn-sized planets, K2-27b, K2-32b, K2-39b, and K2-108b, with the goal of understanding their masses, orbits, and heavy-element enrichment. The planets have similar sizes (RP=4.5-5.5 ), but have dissimilar masses (MP=16-60 ), implying a diversity in their core and envelope masses. K2-32b is the least massive (MP = 16.5 ± 2.7 M) and orbits in close proximity to two sub-Neptunes near a 3:2:1 period commensurability. K2-27b and K2-39b are significantly more massive at MP = 30.9 ± 4.6 M and MP = 39.8 ± 4.4 M, respectively, and show no signs of additional planets. K2-108b is the most massive at MP = 59.4 ± 4.4 M, implying a large reservoir of heavy elements of about ≈50 . Sub-Saturns as a population have a large diversity in planet mass at a given size. They exhibit remarkably little correlation between mass and size; sub-Saturns range from ≈6-60 M, regardless of size. We find a strong correlation between planet mass and host star metallicity, suggesting that metal-rich disks form more massive planet cores. The most massive sub-Saturns tend to lack detected companions and have moderately eccentric orbits, perhaps as a result of a previous epoch of dynamical instability. Finally, we observe only a weak correlation between the planet envelope fraction and present-day equilibrium temperature, suggesting that photo-evaporation does not play a dominant role in determining the amount of gas sub-Saturns accrete from their protoplanetary disks

    K2-66b and K2-106b: Two Extremely Hot Sub-Neptune-size Planets with High Densities

    Get PDF
    We report precise mass and density measurements of two extremely hot sub-Neptune-size planets from the K2 mission using radial velocities, K2 photometry, and adaptive optics imaging. K2-66 harbors a close-in sub-Neptune-sized (2.49_(-0.24)^(+0.34)R_⊕) planet (K2-66b) with a mass of 21.3 ± 3.6 M_⊕. Because the star is evolving up the subgiant branch, K2-66b receives a high level of irradiation, roughly twice the main-sequence value. K2-66b may reside within the so-called "photoevaporation desert," a domain of planet size and incident flux that is almost completely devoid of planets. Its mass and radius imply that K2-66b has, at most, a meager envelope fraction (<5%) and perhaps no envelope at all, making it one of the largest planets without a significant envelope. K2-106 hosts an ultra-short-period planet (P = 13.7 hr) that is one of the hottest sub-Neptune-size planets discovered to date. Its radius (1.82_(-0.14)^(+0.20) R_⊕) and mass (9.0 ± 1.6 M_⊕) are consistent with a rocky composition, as are all other small ultra-short-period planets with well-measured masses. K2-106 also hosts a larger, longer-period planet (R_p = 2.77_(-0.23^(+0.37)R_⊕, P = 13.3 days) with a mass less than 24.4 M_⊕ at 99.7% confidence. K2-66b and K2-106b probe planetary physics in extreme radiation environments. Their high densities reflect the challenge of retaining a substantial gas envelope in such extreme environments
    • …
    corecore