354 research outputs found

    Percutaneous Renal Biopsy

    Get PDF

    Suivi des introgressions dans les croisements interspécifiques chez le riz : utilisation des marqueurs moléculaires

    Get PDF
    La diversité génétique des espèces sauvages de riz est d'un grand intérêt en amélioration des plantes. Malgré de fortes barrières reproductives, des hybrides interspécifiques peuvent être obtenus grâce à la récupération des embryons par culture #in vitro et être recroisés ensuite pour introduire des caractères utiles dans les riz cultivés. Au fur et à mesure que la carte de liaison génétique RFLP (polymorphisme de longueur de fragment de restriction) devient de plus en plus saturée, les marqueurs moléculaires constituent un nouvel outil puissant pour analyser et comprendre les mécanismes de la recombinaison dans les croisements éloignés. Trois exemples d'application des marqueurs moléculaires au suivi des introgressions sont présentés à partir d'activités développées à l'ORSTOM (Institut Français de Recherche Scientifique pour le Développement en Coopération) de Montpellier ou de collaborations avec l'IRRI (Institut International de Recherche sur le Riz, Philippines) et l'Université Cornell (Etats-Unis). Ils concernent l'analyse de générations précoces ou de lignées isogéniques développées avec des espèces sauvages de riz possédant le même génome que le riz cultivé (#O. longistaminata) ou des génomes cytogénétiquement différents (#O. brachyantha, génome F) et (#O. australiensis, génome E). (Résumé d'auteur

    Determination of the standard deviation for proficiency assessment from past participant’s performances

    Get PDF
    The “uncertainty function” introduced by Thompson et al. estimates the reproducibility standard deviation (SR) as a function of concentration. This model was successfully applied to a data set derived from three proficiency testing schemes aiming at the quantification of three toxic elements (cadmium, lead and mercury) in blood and urine. A threshold concentration was determined for each element. Below this concentration SR is found to be constant, while above it the reproducibility relative standard deviation is constant. This model allows the a priori estimation of standard deviation for performance assessment for proficiency testing rounds.JRC.D.5-Standards for Food Bioscienc

    Rapid and concomitant gut microbiota and endocannabinoidome response to diet-induced obesity in mice

    Get PDF
    The intestinal microbiota and the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), have both been implicated in diet-induced obesity and dysmetabolism. These systems were recently suggested to interact during the development of obesity. We aimed at identifying the potential interactions between gut microbiota composition and the eCBome during the establishment of diet-induced obesity and metabolic complications. Male mice were fed a high-fat, high-sucrose (HFHS) diet for 56 days to assess jejunum, ileum, and cecum microbiomes by 16S rRNA gene metataxonomics as well as ileum and plasma eCBome by targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). The HFHS diet induced early (3 days) and persistent glucose intolerance followed by weight gain and hyperinsulinemia. Concomitantly, it induced the elevation of the two eCBs, anandamide, in both ileum and plasma, and 2-arachidonoyl-glycerol, in plasma, as well as alterations in several other N-acylethanolamines and 2-acylglycerols. It also promoted segment-specific changes in the relative abundance of several genera in intestinal microbiota, some of which were observed as early as 3 days following HFHS diet. Weight-independent correlations were found between the relative abundances of, among others, Barnesiella, Eubacterium, Adlercreutzia, Parasutterella, Propionibacterium, Enterococcus, and Methylobacterium and the concentrations of anandamide and the anti-inflammatory eCBome mediator N-docosahexaenoyl-ethanolamine. This study highlights for the first time the existence of potential interactions between the eCBome, an endogenous system of multifunctional signaling lipids, and several intestinal genera during early and late HFHS-induced dysmetabolic events, with potential impact on the host capability of adapting to increased intake of fat and sucrose

    Determination of the standard deviation for proficiency assessment from past participant's performances

    Get PDF
    The "uncertainty function" introduced by Thompson et al. estimates the reproducibility standard deviation as a function of concentration or mass fraction. This model was successfully applied to data derived from three proficiency testing schemes aiming at the quantification of cadmium, lead and mercury in blood and urine. This model allows the estimation of standard deviation for the performance assessment for proficiency testing rounds

    Extraction and analysis of T waves in electrocardiograms during atrial flutter

    Full text link
    Analysis of T waves in the electrocardiogram (ECG) is an essential clinical tool for diagnosis, monitoring and followup of patients with heart dysfunction. During atrial flutter, this analysis has been so far limited by the perturbation of flutter waves superimposed over the T wave. This paper presents a method based on missing data interpolation for eliminating flutter waves from the ECG during atrial flutter. To cope with the correlation between atrial and ventricular electrical activations, the CLEAN deconvolution algorithm was applied to reconstruct the spectrum of the atrial component of the ECG from signal segments corresponding to TQ intervals. The location of these TQ intervals, where the atrial contribution is presumably dominant, were identified iteratively. The algorithm yields the extracted atrial and ventricular contributions to the ECG. Standard T-wave morphology parameters (T-wave amplitude, T peak – T end duration, QT interval) were measured. This technique was validated using synthetic signals, compared to average beat subtraction in a patient with a pacemaker and tested on pseudo-orthogonal ECGs from patients in atrial flutter. Results demonstrated improvements in accuracy and robustness of T-wave analysis as compared to current clinical practice

    Evaluation of a subject-specific transfer-function-based nonlinear QT interval rate-correction method

    Get PDF
    The QT interval in the electrocardiogram (ECG) is a measure of total duration of depolarization and repolarization. Correction for heart rate is necessary to provide a single intrinsic physiological value that can be compared between subjects and within the same subject under different conditions. Standard formulas for the corrected QT (QTc) do not fully reproduce the complexity of the dependence in the preceding interbeat intervals (RR) and inter-subject variability. In this paper, a subject-specific, nonlinear, transfer function-based correction method is formulated to compute the QTc from Holter ECG recordings. The model includes five parameters: three describing the static QT–RR relationship and two representing memory/hysteresis effects that intervene in the calculation of effective RR values. The parameter identification procedure is designed to minimize QTc fluctuations and enforce zero correlation between QTc and effective RR. Weighted regression is used to better handle unbalanced or skewed RR distributions. The proposed optimization approach provides a general mathematical framework for further extensions of the model. Validation, robustness evaluation and comparison with existing QT correction formulas is performed on ECG signals recorded during sinus rhythm, atrial pacing, tilt-table tests, stress tests and atrial flutter (29 subjects in total). The resulting average modeling error on the QTc is 4.9 ± 1.1 ms with a sampling interval of 2 ms, which outperforms correction formulas currently used. The results demonstrate the benefits of subject-specific rate correction and hysteresis reduction

    Determinants of urinary concentrations of dialkyl phosphates among pregnant women in Canada — Results from the MIREC study

    Get PDF
    AbstractOrganophosphate (OP) insecticides are commonly used in agriculture. Their use decreased in recent years as they were gradually replaced by other pesticides, but some OPs are still among the insecticides most used in Canada. Exposure to elevated levels of OPs during pregnancy has been associated with adverse birth outcomes and poorer neurodevelopment in children. The objective of the present study was to examine the relationship between the concentrations of OP pesticides urinary dialkyl phosphate (DAP) metabolites and various factors that are potential sources of exposure or determinants of DAP levels. In the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, six DAPs were measured in 1st trimester urine samples of 1884 pregnant women living in Canada. They were grouped into sums of dimethyl alkyl phosphates (DMAP) and diethyl alkyl phosphates (DEAP) for statistical analysis. We found that 93% of women had at least one DAP detected in their urine. Geometric means (GM) of specific gravity-corrected levels for urine dilution were 59 (95% CI 56–62) and 21 (95% CI 20–22) nmol/L for DMAP and DEAP, respectively. The following characteristics were significantly associated with higher urinary concentrations of DMAP or DEAP: higher education, nulliparous, normal pre-pregnancy body mass index, non-smoker, not fasting at sampling, winter season at sampling, and early and late day collection times. Dietary items that were significantly related with higher urinary concentrations included higher intake of citrus fruits, apple juice, sweet peppers, tomatoes, beans and dry peas, soy and rice beverages, whole grain bread, white wine and green and herbal teas. This study indicates that exposure to these compounds is quasi-ubiquitous. The factors associated with greater DAP levels identified here could be useful to regulatory agencies for risk analysis and management. However, some exposure misclassification might occur due to the single DAP measurement available, and to the presence of preformed DAPs in the environment

    High-throughput volume refractive index distribution measurement through mechanical deformation of single cells

    Get PDF
    This paper reports a high-throughput microphotonic biosensor measuring volume refractive index distribution through mechanical deformation of single cells. Preliminary results suggest that different cell states can be distinguished. This feature could readily add novel parameters for cell analysis without resorting to nucleic acid dies
    • …
    corecore