36,755 research outputs found

    Parametric instability and wave turbulence driven by tidal excitation of internal waves

    Full text link
    We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\"ais\"al\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.Comment: Accepted for publication in Journal of Fluid Mechanics, 27 pages, 21 figure

    An Anatomy of the French Labour Market

    Get PDF
    [Excerpt] Over the last decades, many European countries have experienced high and persistent unemployment rates. The bulk of labour market research has tackled this issue by emphasizing the effect of employment protection legislation, hereafter EPL, on labour market performance. As a result, the importance of labour market flexibility has been widely acknowledged. This view can be summarized by the expressed desire of the E.U. council to give member States incentives to “review and, where appropriate, reform overly restrictive elements in employment legislation that affect labour market dynamics [...] and to undertake other appropriate measures to promote a better balance between work and private life and between flexibility and security”. It is however striking that most of the reforms undertaken have contrasted sharply with this latter recommendation by favouring reforms at the margin. Those reforms have fostered two-tier systems, as the increase in labour market flexibility has taken place mainly through a series of marginal reforms that liberalized the use of fixed-term and/or non-standard employment contracts. Two-tier systems have promoted the emergence of dual employment protection which can be broadly defined as the coexistence of both long-term contracts, which benefit from stringent protection, and short-term contracts with little or no protection. It is often argued that this combination creates labour market segmentation, traps workers in a recurring sequence of frequent unemployment spells, favours unequal repartition of risk between workers and enhances inequalities. In particular, two-tier systems create excess labour turnover as they increase the incentives to create temporary rather than permanent jobs, reduce job destruction for stable jobs, but increase churning for temporary jobs. For instance in countries with stringent legal constraints on the termination of permanent jobs, such as France or Spain, it turns out that about 70 per cent to 90 per cent of entries into employment are in temporary jobs with very short duration (on average less than one month and a half in France). If excess labour turnover and its consequences are a concern for the economy as a whole, the dramatic spread of temporary jobs is even more a concern for young/less experienced workers as they are more likely to be negatively affected by the adverse effects of dual employment protection. The French labour market is no exception and has faced similar trends during the 1990s. Given the pervasiveness of temporary jobs on the labour market and their consequences on the society and economic outcomes, it is urgent to understand how two-tier systems shape the functioning of the labour market. This is the very purpose of the present report. After having described in details the salient features of the French dual labour market and having discussed the legislation at the root of French dualism, we review the different mechanisms through which dualism affect labour markets: labour market dynamics, wage inequality, human capital accumulation, job satisfaction, social integration and health. We consider whenever possible both theoretical insights and empirical evaluations. We finally conclude this report by providing possible directions to reform the labour market

    Torque of guided light on an atom near an optical nanofiber

    Get PDF
    We calculate analytically and numerically the axial orbital and spin torques of guided light on a two-level atom near an optical nanofiber. We show that the generation of these torques is governed by the angular momentum conservation law in the Minkowski formulation. The orbital torque on the atom near the fiber has a contribution from the average recoil of spontaneously emitted photons. Photon angular momentum and atomic spin angular momentum can be converted into atomic orbital angular momentum. The orbital and spin angular momenta of the guided field are not transferred separately to the orbital and spin angular momenta of the atom

    Voicing classification of visual speech using convolutional neural networks

    Get PDF
    The application of neural network and convolutional neural net- work (CNN) architectures is explored for the tasks of voicing classification (classifying frames as being either non-speech, unvoiced, or voiced) and voice activity detection (VAD) of vi- sual speech. Experiments are conducted for both speaker de- pendent and speaker independent scenarios. A Gaussian mixture model (GMM) baseline system is de- veloped using standard image-based two-dimensional discrete cosine transform (2D-DCT) visual speech features, achieving speaker dependent accuracies of 79% and 94%, for voicing classification and VAD respectively. Additionally, a single- layer neural network system trained using the same visual fea- tures achieves accuracies of 86 % and 97 %. A novel technique using convolutional neural networks for visual speech feature extraction and classification is presented. The voicing classifi- cation and VAD results using the system are further improved to 88 % and 98 % respectively. The speaker independent results show the neural network system to outperform both the GMM and CNN systems, achiev- ing accuracies of 63 % for voicing classification, and 79 % for voice activity detection

    On Time Synchronization Issues in Time-Sensitive Networks with Regulators and Nonideal Clocks

    Full text link
    Flow reshaping is used in time-sensitive networks (as in the context of IEEE TSN and IETF Detnet) in order to reduce burstiness inside the network and to support the computation of guaranteed latency bounds. This is performed using per-flow regulators (such as the Token Bucket Filter) or interleaved regulators (as with IEEE TSN Asynchronous Traffic Shaping). Both types of regulators are beneficial as they cancel the increase of burstiness due to multiplexing inside the network. It was demonstrated, by using network calculus, that they do not increase the worst-case latency. However, the properties of regulators were established assuming that time is perfect in all network nodes. In reality, nodes use local, imperfect clocks. Time-sensitive networks exist in two flavours: (1) in non-synchronized networks, local clocks run independently at every node and their deviations are not controlled and (2) in synchronized networks, the deviations of local clocks are kept within very small bounds using for example a synchronization protocol (such as PTP) or a satellite based geo-positioning system (such as GPS). We revisit the properties of regulators in both cases. In non-synchronized networks, we show that ignoring the timing inaccuracies can lead to network instability due to unbounded delay in per-flow or interleaved regulators. We propose and analyze two methods (rate and burst cascade, and asynchronous dual arrival-curve method) for avoiding this problem. In synchronized networks, we show that there is no instability with per-flow regulators but, surprisingly, interleaved regulators can lead to instability. To establish these results, we develop a new framework that captures industrial requirements on clocks in both non-synchronized and synchronized networks, and we develop a toolbox that extends network calculus to account for clock imperfections.Comment: ACM SIGMETRICS 2020 Boston, Massachusetts, USA June 8-12, 202

    Self-Adjointness of Dirac Operators with Infinite Mass Boundary Conditions in Sectors

    Full text link
    This paper deals with the study of the two-dimensional Dirac operatorwith infinite mass boundary condition in a sector. We investigate the question ofself-adjointness depending on the aperture of the sector: when the sector is convexit is self-adjoint on a usual Sobolev space whereas when the sector is non-convexit has a family of self-adjoint extensions parametrized by a complex number of theunit circle. As a byproduct of this analysis we are able to give self-adjointnessresults on polygones. We also discuss the question of distinguished self-adjointextensions and study basic spectral properties of the operator in the sector
    corecore