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Abstract: We calculate analytically and numerically the axial orbital and spin torques of
guided light on a two-level atom near an optical nanofiber. We show that the generation of these
torques is governed by the angular momentum conservation law in the Minkowski formulation.
The orbital torque on the atom near the fiber has a contribution from the average recoil of
spontaneously emitted photons. Photon angular momentum and atomic spin angular momentum
can be converted into atomic orbital angular momentum. The orbital and spin angular momenta
of the guided field are not transferred separately to the orbital and spin angular momenta of the
atom.
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1. Introduction

The ability to transfer momentum between light and atoms, molecules, or material particles is
one of the cornerstones of light-matter interactions and has found many applications in physics
and technology [1, 2]. For the electromagnetic field in a dielectric medium, several formulations
for the linear and angular momentum densities can be found in the literature [3–7]. For example,
at the simplest level, the momentum of a single plane-wave photon is pA = ~k0/n in the Abraham
formulation and pM = ~k0n in the Minkowski formulation, where k0 is wave number in free space
and n is the refractive index of the medium. The difference between these formulations originates
from the fact that, in the different existing theories, the divisions of the total energy-momentum
tensor into electromagnetic and matter contributions are different from each other and depend on
the choice of observable [4]. Depending on specific situations, one of the forms of momentum
appears as the natural, experimentally observed momentum [3–5]. It has been shown for a
single atom interacting with a light pulse that both the Abraham and Minkowski momenta of
photons have identifiable roles associated, respectively, with the kinetic and canonical momenta
of the atom [8]. The mass-polariton theory of light in a medium gives an unambiguous physical
meaning to the Abraham and Minkowski momenta [9]. According to this theory, a light pulse
propagating in a medium is made of mass-polariton quasiparticles, which are quantized coupled
states of the field and an atomic mass density wave, driven forward by the optical force. The
total momentum of a mass-polariton quasiparticle is the Minkowski momentum, the contribution
from the field is the Abraham momentum, and the difference is carried by the mass density
wave [9–13].

Angular momentum transfer from light to matter has been examined in a large number of
systems in recent years [5,14]. These include the transfers of angular momentum of a paraxial light
beam to particles [15–18], atoms [19–22], molecules [23, 24], ensembles of cold atoms [25–28],
and Bose-Einstein condensates [29–32]. Periodic exchange of angular momentum between an
atom and a reflecting surface has been studied [33]. The optical torque on a two-level system
near a strongly nonreciprocal medium has been calculated [34].
One prominent and experimentally relevant example where the differences between the

Abraham and Minkowski formulations of linear and angular momenta are important is the case
of guided light of nanofibers. Such fibers are vacuum-clad ultrathin optical fibers that allow
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tightly radially confined light to propagate over a long distance and to interact efficiently with
nearby atoms [35–38]. Due to the cylindrical symmetry of the nanofibers, light in a higher-order
mode may have a large angular momentum. The cross-sectional profile of the guided light
of a vacuum-clad nanofiber has two parts, the inner part, which is confined in the dielectric
medium of the fiber, and the outer part, which extends radially in the vacuum outside the fiber
boundary [39, 40]. Therefore, the magnitudes of linear and angular momenta of guided light
depend on the formulations for these characteristics [11, 41]. Calculating the Abraham angular
momentum of a photon in a quasicircularly polarized guided mode with an azimuthal mode order
l shows that it increases with increasing l [42], but is different from l~ [11, 41, 42]. Conversely,
the Minkowski angular momentum per photon is quantized to be exactly equal to l~ [11, 41, 43].
It is desirable to know what form is appropriate for transfers of angular momentum from guided
light to atoms. Since light in a high-order guided mode can have a large angular momentum, such
transfers can be used to generate, control, and manipulate the orbital and spin angular momenta
of atoms, molecules, and particles.
When considering the optical forces and torques that stem from the transfers of linear and

angular momenta from guided light to atoms, the near-field nature of the guided field requires
careful treatment. In particular, for atoms near a nanofiber, spontaneous emission can become
asymmetric with respect to opposite propagation directions [44–47] due to spin-orbit coupling of
light carrying transverse spin angular momentum [48–56]. Asymmetric spontaneous emission
may lead to a nonzero average spontaneous emission recoil and, hence, may contribute to the
optical force on the atoms. In particular, a lateral spontaneous emission recoil force may arise for
an initially excited atom near a nanofiber [57,58]. Recently, the full vector structure of the force of
guided light on an atom near a vacuum-clad ultrathin optical fiber has been investigated [59, 60].
It is clear that the azimuthal component of the force leads to an axial torque and consequently to
a transfer of angular momentum from guided light to the orbital motion of the atom.

In this work, we study the transfer of angular momentum from a guided driving light field to a
two-level atom near a vacuum-clad ultrathin optical fiber. We calculate the torque on the atom
by employing the previous results of [59, 60] for the force, which were obtained by using the
Hamiltonian formalism and the mode function expansion technique. We show that the generation
of the axial orbital and spin torques of guided light is governed by the angular momentum
conservation law with the photon angular momentum in the Minkowski formulation. We find
that the orbital torque on the atom near the fiber has a contribution from the averaged recoil
of spontaneously emitted photons. We show that the orbital and spin angular momenta of the
guided field are not transferred separately to the orbital and spin angular momenta of the atom.

The paper is organized as follows. In Sec. 2 we describe the model system and briefly review
the force of guided light on an atom. In Sec. 3 we study the axial orbital and spin torques of
guided light on the atom. Our conclusions are given in Sec. 4.

2. Model system and force of guided light on an atom

In this section, we describe the model system and briefly review the previous results of [59, 60]
for the force of guided light on an atom, which were obtained by using the Hamiltonian formalism
and the mode function expansion technique.
We consider a two-level atom driven by a near-resonant classical guided field with optical

frequency ωc and envelope E near a vacuum-clad ultrathin optical fiber (see Fig. 1). The atom
has an upper energy level |e〉 and a lower energy level |g〉, with energies ~ωe and ~ωg. The
atomic transition frequency is ω0 = ωe − ωg. The fiber has a cylindrical dielectric core of radius
a and refractive index n1 > 1 and an infinite vacuum cladding of refractive index n2 = 1. We are
interested in vacuum-clad silica-core ultrathin fibers with diameters in the range of hundreds
nanometers, which can support only the fundamental HE11 mode and a few higher-order modes
in the optical region. Such optical fibers are usually called nanofibers [35–38]. In view of the

                                                                                            Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 15047 



very low losses of silica in the wavelength range of interest, we neglect material absorption.
We use Cartesian coordinates {x, y, z}, where z is the coordinate along the fiber axis, and also
cylindrical coordinates {r, ϕ, z}, where r and ϕ are the polar coordinates in the transverse plane
xy.

z

x

y

nanofiber

guided field

two-level atom

|e〉

|g〉
2a ω0

Fig. 1. Two-level atom driven by guided light of a vacuum-clad ultrathin optical fiber.

The atom interacts with the classical guided driving field E and the quantum electromagnetic
field. In the presence of the fiber, the quantum field can be decomposed into the contributions
from guided and radiation modes [61–63]. Then, the Hamiltonian for the atom-field interaction
in the dipole approximation is [59, 60]

Hint = −~
2
Ωσege−i(ωc−ω0)t − i~

∑
α

Gασegaαe−i(ω−ω0)t

− i~
∑
α

G̃ασgeaαe−i(ω+ω0)t + H.c., (1)

where σi j = |i〉〈 j | with i, j = e, g are the atomic operators, aα and a†α are the photon operators,
Ω = d · E/~ is the Rabi frequency of the driving field, with d = deg = 〈e|D|g〉 being the
matrix element of the atomic dipole operator D, and Gα and G̃α are the coupling coefficients
for the interaction between the atom and the quantum field [59, 60]. The notations α = µ, ν and∑
α =

∑
µ +

∑
ν stand for the mode index and the mode summation. The index µ = (ωN f p)

labels guided modes, where ω is the mode frequency, N = HElm, EHlm, TE0m, or TM0m is
the mode type, with l = 1, 2, . . . and m = 1, 2, . . . being the azimuthal and radial mode orders,
f = ±1 denotes the forward or backward propagation direction along the fiber axis z, and
p = ±1 for HE and EH modes and 0 for TE and TM modes is the phase circulation direction
index [61–63]. The longitudinal propagation constant β of a guided mode is determined by
the fiber eigenvalue equation. The index ν = (ωβlp) labels radiation modes, where β is the
longitudinal propagation constant, l = 0,±1,±2, . . . is the mode order, and p = +,− is the mode
polarization index. The longitudinal propagation constant β of a radiation mode of frequency
ω can vary continuously, from −kn2 to kn2 (with k = ω/c). The notations ∑

µ =
∑

N f p

∫ ∞
0 dω

and
∑
ν =

∑
lp

∫ ∞
0 dω

∫ kn2
−kn2

dβ denote the summations over guided and radiation modes. We
emphasize that the atom can absorb a photon in the classical guided driving field and then emit a
photon into the quantum guided and radiation modes. This is the reason why we need to include
the quantum guided and radiation modes in our model.
The expressions for the coupling coefficients Gα and G̃α with α = µ, ν are given by

Gµ =

√
ωβ′

4πε0~
(d · e(µ))ei( f βz+plϕ),

Gν =

√
ω

4πε0~
(d · e(ν))ei(βz+lϕ), (2)
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and

G̃µ =

√
ωβ′

4π~ε0
(d∗ · e(µ))ei( f βz+plϕ),

G̃ν =

√
ω

4π~ε0
(d∗ · e(ν))ei(βz+lϕ),

(3)

where e(µ) and e(ν) are the normalized mode functions given in [47, 61–63]. An important
property of the mode functions of the hybrid HE and EH modes and the TM modes is that
the longitudinal component e(µ)z is nonvanishing and in quadrature with the radial component
e(µ)r . We note that in the Hamiltonian Hint given by Eq. (1) we have used the rotating-wave
approximation for the driving field but not for the quantum field.
In a semiclassical treatment, the center-of-mass motion of the atom is governed by the force

F = −〈∇Hint〉 [64–67]. According to [59, 60], we have

F = F(drv) + ρeeF(spon) + ρeeF(vdW)e + ρggF(vdW)g, (4)

where
F(drv) =

~

2
(ρge∇Ω + ρeg∇Ω∗) (5)

is the force produced by the interaction with the driving field,

F(spon) = iπ~
∑
α0

(G∗α0∇Gα0 − Gα0∇G∗α0 ) (6)

is the force resulting from the average recoil of spontaneous emission of the atom in the excited
state [57], and

F(vdW)e = ~∇P
∑
α

|Gα |2
ω − ω0

(7)

and
F(vdW)g = ~∇P

∑
α

|Gα |2
ω + ω0

(8)

are the forces resulting from the van der Waals potentials for the excited and ground states,
respectively. We have also introduced the notations ρi j = 〈i |ρ| j〉 with i, j = e, g for the matrix
elements of the density operator ρ for the atomic internal state. In Eq. (6), the notation α0 is the
label of a resonant guided mode µ0 = (ω0N f p) or a resonant radiation mode ν0 = (ω0βlp). We
note that F(scatt) ≡ ρeeF(spon) is the force produced by the average recoil of the photons that are
scattered from the atom with the excited-state population ρee.

The forces F(vdW)e and F(vdW)g are produced by the van der Waals potentials Ue and Ug [68],
that is, F(vdW)e = −∇Ue and F(vdW)g = −∇Ug. These body-induced potentials are given as

Ue = −~P
∑
α

|Gα |2
ω − ω0

− δE (vac)
e ,

Ug = −~P
∑
α

|Gα |2
ω + ω0

− δE (vac)
g , (9)

where δE (vac)
e and δE (vac)

g are the energy level shifts induced by the vacuum field in free space
(in the absence of the fiber). Note that δE (vac)

e − δE (vac)
g = ~δω

(vac)
0 , where δω(vac)

0 is the Lamb
shift of the transition frequency of the atom in free space. The detuning of the field from the
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atom near the fiber can be written as ∆ = ∆0 − (Ue −Ug)/~, where ∆0 = ωL − ω0 − δω(vac)
0 is

the detuning of the field from the atom in the absence of the fiber.
In the case of atoms in free space, spontaneous emission is symmetric with respect to opposite

propagation directions. In this case, we have F(spon) = 0. However, in the case of atoms near
an object, spontaneous emission may become asymmetric with respect to opposite propagation
directions [44–47]. This directional effect is due to spin-orbit coupling of light carrying transverse
spin angular momentum [48–56]. Asymmetric spontaneous emission may lead to a nonzero
average spontaneous emission recoil and, hence, may contribute to the optical force on the atoms.
In particular, an axial lateral spontaneous emission recoil force F(spon)

z may arise for an initially
excited atom near a nanofiber [57, 58].

3. Axial orbital and spin torques of the guided light on the atom

The azimuthal force component Fϕ is responsible for the rotational motion of the atom around
the fiber axis. The axial component of the orbital torque on the atom is Tz = rFϕ . This torque
component characterizes the rate of the change of the axial component of the orbital angular
momentum of the atom. We use Eqs. (4)–(8) to calculate the azimuthal force Fϕ and the axial
orbital torque Tz . Then, we obtain

Tz = T (drv)
z + ρeeT

(spon)
z + ρeeT

(vdW)e
z + ρggT (vdW)g

z . (10)

The term T (drv)
z is the axial torque component produced by the driving field and is given as

T (drv)
z =

~

2

(
ρge

∂Ω

∂ϕ
+ ρeg

∂Ω∗

∂ϕ

)
. (11)

The term T (spon)
z is the axial torque component produced by the average recoil of spontaneous

emission of the atom in the excited state |e〉 and is given as

T (spon)
z = iπ~

∑
α0

(
G∗α0

∂Gα0

∂ϕ
− Gα0

∂G∗α0

∂ϕ

)
. (12)

Note that T (scatt)
z ≡ ρeeT (spon)

z is the axial torque component produced by the average recoil of the
photons that are scattered from the atom with the excited-state population ρee. The terms

T (vdW)e
z = −∂Ue

∂ϕ
,

T (vdW)g
z = −

∂Ug

∂ϕ
(13)

are the axial torques resulting from the van der Waals potentials Ue and Ug for the excited and
ground states.

We emphasize again that, in the case of atoms in free space, spontaneous emission is symmetric
with respect to opposite propagation directions. In this case, we have T (spon)

z = 0, that is, the
recoil of spontaneously emitted photons in average does not contribute to the axial orbital torque
Tz on the atom. Hence, T (spon)

z was not considered in the previous work on the angular momentum
transfer [19–21]. However, in the case of atoms near an object, we may have T (spon)

z , 0.
In the following we calculate the components of the axial orbital torque Tz on the atom near

the fiber. First, we calculate the axial orbital torque T (drv)
z produced by the interaction with the

guided driving field. We assume that this field is prepared in a quasicircularly hybrid HE or EH
mode, a TE mode, or a TM mode. Such a mode can be labeled by an index µc = (ωcNc fcpc),
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where ωc is the driving field frequency, Nc = HElcmc , EHlcmc , TE0mc , or TM0mc is the mode
type, fc = ±1 denotes the forward or backward propagation direction along the fiber axis z, and
pc = ±1 for HE and EH modes and 0 for TE and TM modes is the phase circulation direction
index [61–63]. Here, lc = 1, 2, . . . for HE and EH modes and 0 for TE and TM modes is the
azimuthal mode order, and mc = 1, 2, . . . is the radial mode order. Then, the amplitude of the
driving field can be written as

E = A[r̂e(µc )r (r) + ϕ̂e(µc )ϕ (r) + ẑe(µc )z (r)]ei fcβcz+ipc lcϕ, (14)

where e(µc )r,ϕ,z(r) are the cylindrical components of the reduced mode function and depend on r but
not on ϕ and z, and A is a constant determined by the field power.
We introduce the notations V0 = Vz and V±1 = ∓(Vx ± iVy)/

√
2 for the spherical tensor

components of an arbitrary complex vector V. We assume that the dipole matrix element vector
d has a single nonzero spherical tensor element dq , where q = 0,±1. Such a transition can be
realized between the magnetic levels M ′ and M = M ′ − q of an electric-dipole emission line of
an alkali-metal atom. The corresponding type of the atomic transition is π for q = 0 and σ± for
q = ±1 with respect to the quantization axis z. Then, the Rabi frequency Ω for the field-atom
interaction is

Ω = (−1)qdqE−q/~. (15)

It follows from Eq. (14) that

E−q = Ae(µc )−q (r)e−iqϕei fcβcz+ipc lcϕ . (16)

This leads to
∂Ω

∂ϕ
= i(pclc − q)Ω. (17)

Then, Eq. (11) yields
T (drv)
z = −(pclc − q)~Im(ρgeΩ). (18)

On the other hand, the time evolution of the population ρee of the atomic upper state is governed
by the equation [64]

Ûρee = −Im(Ωρge) − Γρee, (19)

where
Γ = 2π

∑
α0

|Gα0 |2 (20)

is the rate of spontaneous emission of the atom in the presence of the fiber [47]. Hence, the axial
component of the orbital torque resulting from the interaction with the driving field is found to be

T (drv)
z = (pclc − q)~(Γρee + Ûρee). (21)

It is clear that T (drv)
z is produced by the force F(drv)

ϕ = T (drv)
z /r = (pclc − q)~(Γρee + Ûρee)/r,

which is the azimuthal pressure force component.
Equation (21) describes the exchange of angular momentum between the guided driving

field and the atom in the excitation process. According to [11, 41, 43], the canonical angular
momentum of a photon in the guided driving field in the Minkowski formulation is pclc~ (see
Appendix A). The change of the spin angular momentum of the atom due to an upward transition
is q~. The scattering rate is equal to Γρee [64]. The upward-transition (photon-absorption) rate
is equal to Γρee + Ûρee, which is the sum of the scattering rate Γρee and the atomic excitation rate
Ûρee [64]. Then, it is clear from Eq. (21) that the angular momentum of absorbed guided photons
is converted into the orbital and spin angular momenta of the atom. Thus, Eq. (21) shows that the
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generation of the torque of light on the atom is governed by the conservation of the total angular
momentum of the atom-field system. Moreover, Eq. (21) confirms that the photon recoil imparted
on an atom near a nanofiber is of the Minkowski form. This conclusion is consistent with the
results for the forces of stationary light fields on atoms in dielectric media or near objects [69–74]
and also with the results for the linear and angular momenta of mass-polariton quasiparticles
formed by guided light pulses in optical fibers [11] or Laguerre-Gaussian light pulses in bulk
media [12]. However, it is different from the result for a light pulse interacting with a single atom
in free space [8]. Equation (21) is a key result of the present paper.
The spin torque of light on an oscillating electric dipole is given by [52, 75]

Q(drv) =
1
2

Re(D∗ × E), (22)

where D is the envelope of the dipole positive-frequency component. For the two-level atom
considered here, we have D = 2d∗ρeg. In the case where the dipole matrix element vector d has
a single nonzero spherical tensor component dq , the axial component of the spin torque resulting
from the interaction with the driving field is found to be

Q(drv)
z = −q~Im(Ωρge). (23)

Using Eq. (19), we obtain
Q(drv)

z = q~(Γρee + Ûρee). (24)

Equation (24) indicates that the axial spin torque Q(drv)
z resulting from the interaction with the

driving field is the product of the change q~ of the spin angular momentum of the atom per
upward transition and the photon-absorption rate Γρee + Ûρee.

We note that
T (drv)
z +Q(drv)

z = pclc~(Γρee + Ûρee). (25)

Equation (25) shows that the total torque T (drv)
z +Q(drv)

z resulting from the interaction with the
driving field is the product of the Minkowski angular momentum pclc~ of a guided light photon
and the photon-absorption rate Γρee + Ûρee. Thus, the total torque produced by the interaction
with the driving field is equal to the angular momentum of the driving photons absorbed per unit
of time.
We find that the ratio between the orbital and spin torques T (drv)

z and Q(drv)
z produced by the

interaction with the driving field is

T (drv)
z

Q(drv)
z

=
pclc − q

q
. (26)

This ratio is determined by the azimuthal mode order lc , the mode polarization index pc , and the
dipole polarization index q. However, it does not depend on the radial distance r and the fiber
radius a. Meanwhile, the ratio J(orb)

z /J(spin)
z between the orbital part J(orb)

z and the spin part J(spin)
z

of the axial angular momentum Jz of the guided driving field depends on a (see Appendix A).
Therefore, we have T (drv)

z /Q(drv)
z , J(orb)

z /J(spin)
z . This inequality means that the orbital and spin

angular momenta of the guided field are not transferred separately to the orbital and spin angular
momenta of the two-level atom, unlike the case of small isotropic particles in free space [18].

We note that, for lc ≥ 1 and q = pc , we have (pclc − q)~ = pc(lc − 1)~. In this case, Eq. (21)
indicates that the photon angular momentum is converted into the atomic spin and orbital angular
momenta. For lc ≥ 1 and q = −pc , we have (pclc − q)~ = pc(lc + 1)~. In this case, Eq. (21)
says that the photon angular momentum and the change of the atomic spin angular momentum
have the same sign and add up in generating the atomic orbital angular momentum. For lc ≥ 1
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and q = 0, the total photon angular momentum is converted into the atomic orbital angular
momentum.
Equation (21) can be used for not only hybrid modes (lc ≥ 1) but also TE and TM modes

(lc = 0). In the cases of TE and TM modes, we have

T (drv)
z = −Q(drv)

z = −q~(Γρee + Ûρee), (27)

which indicates that the atomic orbital angular momentum can be generated from the atomic spin
angular momentum through the interaction with a photon in a TE or TM mode having no angular
momentum. This conversion of atomic spin angular momentum into atomic orbital angular
momentum via the interaction with a guided photon is possible because the guided mode is a
structured field with a complex polarization profile. When an atom with a π, σ+, or σ− transition
interacts with a plane-wave field in free space, in accordance with the selection rules, the atomic
spin angular momentum is converted only to the photon spin angular momentum.

Note that, in the case where the atom is at rest and in the steady-state regime, we have Ûρee = 0.
In this case, we obtain

T (drv)
z = (pclc − q)~Γρee (28)

and
Q(drv)

z = q~Γρee, (29)

where the population ρee of the excited state of the atom in the steady state is given as [64]

ρee =
|Ω|2

4∆2 + Γ2 + 2|Ω|2
. (30)

In the limit of high driving field powers, we have ρee → 1/2, which leads to the limiting values

T (drv)
z → (pclc − q)~Γ/2,

Q(drv)
z → q~Γ/2.

(31)

We plot in Fig. 2 the torques T (drv)
z and Q(drv)

z as functions of the radial position r of the atom
in the case where the driving field is in a quasicircularly polarized HE21 mode and the atom is
at rest and in the steady-state regime. The fact that the solid red curves of the figure have the
same sign indicates that, for q = pc , the angular momentum of guided light is converted into the
orbital and spin angular momenta of the atom in the excitation process. The opposite signs of
the dotted blue curves in Figs. 2(a) and 2(b) indicate that, for q = −pc , the atomic spin angular
momentum is converted into the atomic orbital angular momentum due to the excitation of the
atom by guided light.

We note that the maximal values of the torques in Fig. 2 are on the order of 80 zN nm. For the
axial orbital torque on the atom at the radial distance of 400 nm, the corresponding azimuthal
force is on the order of 0.2 zN. Such a value is comparable to the optical forces on single atoms
in laser cooling and trapping techniques [64]. By increasing the power of the guided driving
field, we can approach the limiting values (31).

We now calculate the axial orbital torqueT (spon)
z produced by the recoil of spontaneous emission.

The expressions for the coupling coefficients Gα=µ,ν are given by Eqs. (2) and (3). In the case
where a single spherical tensor component dq of the dipole matrix element vector d is nonzero,
we find

Gµ

∂ϕ
= i(pl − q)Gµ,

Gν

∂ϕ
= i(l − q)Gν .

(32)
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Fig. 2. Radial dependencies of the orbital and spin torques T (drv)
z (a) and Q(drv)

z (b) of
the guided driving field on the atom being at rest and in the steady state. The dipole
matrix-element vector d has only one nonzero spherical tensor component dq , where q = 1,
0, and −1. The driving field is in a quasicircularly polarized HE21 mode with fc = +1 and
pc = +1. The power and detuning of the driving field are chosen to be P = 1 pW and ∆ = 0.
The fiber radius is a = 350 nm. The dipole magnitude d corresponds to the natural linewidth
γ0/2π = 6.065 MHz of the D2 line of a 87Rb atom. The wavelength of the atomic transition
is λ0 = 780 nm. The refractive indices of the fiber and the vacuum cladding are n1 = 1.4537
and n2 = 1, respectively.

In this case, the axial component of the orbital torque of spontaneous emission recoil is found
from Eq. (12) to be

T (spon)
z = q~Γ − ~

∑
µ0

plγµ0 − ~
∑
ν0

lγν0, (33)

where

γµ0 = 2π |Gµ0 |2,
γν0 = 2π |Gν0 |2

(34)

are the rates of spontaneous emission into the guided mode µ0 and the radiation mode ν0 [47].
Equation (33) describes the exchange of angular momentum between the quantum field and the

atom in the spontaneous emission process. Indeed, the angular momentum of a photon emitted
into a guided mode µ = (ωN f p) or a radiation mode ν = (ωβlp) is pl~ or l~, respectively, and
the change of the spin angular momentum of the atom due to a downward transition is −q~. Then,
it is clear from Eq. (33) that the angular momentum of re-emitted photons is converted into the
atomic spin and orbital angular momenta. Thus, we observe again the conservation of the total
angular momentum of the atom-field system and the agreement with the Minkowski formulation
of angular momentum of light. Equation (33) is another key result of the present paper.
The axial spin torque Q(spon)

z produced by the spontaneous emission process is the product
of the change −q~ of the spin angular momentum of the atom per downward transition and the
spontaneous emission rate Γ, that is,

Q(spon)
z = −q~Γ. (35)
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We find
T (spon)
z +Q(spon)

z = −~
∑
µ0

plγµ0 − ~
∑
ν0

lγν0 . (36)

Equation (36) shows that the total torque T (spon)
z +Q(spon)

z of spontaneous emission on the atom is
equal to the minus of the angular momentum of the photons that are spontaneously emitted from
the atom per unit of time.
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Fig. 3. Radial dependencies of the orbital and spin scattering torques T (scatt)
z = ρeeT (spon)

z

and Q(scatt)
z = ρeeQ(spon)

z for the parameters of Fig. 2.

It is clear that the torquesT (spon)
z andQ(spon)

z of spontaneous emission on the atom do not depend
on the driving field. However, the scattering torques T (scatt)

z = ρeeT
(spon)
z and Q(scatt)

z = ρeeQ(spon)
z

depend on the driving field through the excited-state population ρee.
We plot in Fig. 3 the torques T (scatt)

z and Q(scatt)
z as functions of the radial position r of the atom

being at rest and in the steady-state regime. The opposite signs of the curve for T (scatt)
z for a given

q , 0 and the corresponding curve for Q(scatt)
z indicate that the atomic spin angular momentum is

converted into the atomic orbital angular momentum due to the scattering of light from the atom.
Finally, we discuss the axial torque components T (vdW)e

z and T (vdW)g
z , produced by the van

der Waals potentials Ue and Ug. Depending on the orientation of the dipole matrix-element
vector d, the potentials Ue and Ug may depend on the azimuthal angle ϕ and, hence, the torques
T (vdW)e
z and T (vdW)g

z may be nonzero. In this paper, we consider the case where a single spherical
tensor component dq of the dipole matrix element vector d is nonzero. In this case, due to the
symmetry of the dipole with respect to the fiber, the potentials Ue and Ug are independent of ϕ
and, therefore, we have T (vdW)e

z = T (vdW)g
z = 0.

Combining the above results, we find that the total axial orbital torque isTz = T (drv)
z + ρeeT

(spon)
z

and reads
Tz = ~ρee

(
pclcΓ −

∑
µ0

plγµ0 −
∑
ν0

lγν0

)
+ (pclc − q)~ Ûρee . (37)

The total axial spin torque is Qz = Q(drv)
z + ρeeQ(spon)

z and reads

Qz = q~ Ûρee . (38)
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When the atom is at rest and in the steady-state regime, we have Ûρee = 0. In this case, we obtain

Tz = ~ρee

(
pclcΓ −

∑
µ0

plγµ0 −
∑
ν0

lγν0

)
(39)

and
Qz = 0. (40)
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Fig. 4. Radial dependence of the total orbital torque Tz on the atom being at rest and in the
steady state. The driving field is in a quasicircularly polarized HE11 mode (solid red curves),
a TE01 mode (dashed green curves), a TM01 mode (dotted blue curves), or a quasicircularly
polarized HE21 mode (dashed-dotted magenta curves), with the power P = 1 pW. The
polarization circulation index for the fields in the HE11 and HE21 modes is pc = +1. Other
parameters are as for Fig. 2.

We plot in Fig. 4 the total axial orbital torque Tz as a function of the radial position r of the
atom at rest and in the steady-state regime. The results of calculations for different types of
guided modes with a given power are shown. We observe from Fig. 4(a) that, for q = 1, the axial
component Tz of the total orbital torque is larger for the HE11 and HE21 modes with pc = q = 1
than for the TE01 and TM01 modes. However, Fig. 4(c) shows that, for q = −1, in the region
r/a > 1.15, Tz is larger for the TE01 and TM01 modes than for the HE11 and HE21 modes with
pc = −q = 1. The occurrence of this feature is due to the fact that, for q = −1, the Rabi frequency
Ω is larger for the TE01 and TM01 modes than for the HE11 and HE21 modes with pc = −q = 1.

4. Summary

In conclusion, we have calculated analytically and numerically the axial orbital and spin torques
of guided light on a two-level atom near an optical nanofiber. With this we have shown that
the generation of these torques is governed by the angular momentum conservation law with
the photon angular momentum in the Minkowski formulation. In addition, we have found that,
unlike the orbital torque on an atom in free space, the orbital torque on the atom near the fiber has
a contribution from the average recoil of spontaneously emitted photons. We have shown that the
photon angular momentum and the atomic spin angular momentum can be converted into the
atomic orbital angular momentum. We have found that the orbital and spin angular momenta of
the guided field are not transferred separately to the orbital and spin angular momenta of the
atom, unlike the case of small isotropic particles in free space. Our results quantify the transfer
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of angular momentum of guided photons to atoms and are important when trying to generate,
control, and manipulate the orbital and spin angular momenta of atoms, molecules, and particles
using nanofiber guided light. They can be expected to have significant influence on ongoing and
future experiments in nanofiber optics.

A. Angular momentum of guided light in the Minkowski formulation

For the linear momentum density of the field in a dielectric medium, the Abraham formulation
takes p = pA ≡ [E×H]/c2 = S/c2, where S = [E×H] is the Poynting vector. On the other hand,
the Minkowski formulation takes p = pM ≡ [D × B] = n2S/c2. Angular momentum of guided
light has been studied in the Abraham [11,41,42] and Minkowski [11, 41,43] formulations. In
this appendix, we present a simple derivation for the angular momentum of guided light in the
Minkowski formulation.
The Minkowski angular momentum of guided light per unit length is defined by

J ≡
∫
(R × pM) dr =

1
c2

∫
n2(R × S) dr. (41)

Here, we have introduced the notation
∫

dr =
∫ 2π
0 dϕ

∫ ∞
0 r dr for the integral over the cross-

section plane and the notation R = xx̂ + yŷ + zẑ for the position vector in the three-dimensional
space. The refractive index n is a function of the radial position r and is given as n(r) = n1 for
r < a and n2 for r > a.

The Minkowski angular momentum J of a light beam can be decomposed into orbital and spin
parts as [6, 7]

J = J(orb) + J(spin). (42)

In the dual-symmetric formalism, the orbital and spin parts of angular momentum per unit length
are given as

J(orb) =

∫
j(orb) dr (43)

and
J(spin) =

∫
j(spin) dr, (44)

where

j(orb) =
ε0
4ω

n2Im[E∗ · (R × ∇)E]

+
µ0
4ω

Im[H∗ · (R × ∇)H]
(45)

and
j(spin) =

ε0
4ω

n2Im(E∗ × E) + µ0
4ω

Im(H∗ ×H) (46)

are the corresponding densities [42, 43]. Here, E and H are the envelopes of the positive
frequency components of the electric and magnetic parts E and H of the field. In Eq. (45), the dot
product applies to the field vectors, that is, A · (R × ∇)B ≡ ∑

i=x,y,z Ai(R × ∇)Bi for arbitrary
field vectorsA and B.

We introduce the notation j(can) = j(orb) + j(spin) for the sum density of the orbital and spin parts
of angular momentum. The quantity j(can) is called the canonical Minkowski angular momentum
density. Although J =

∫
j(can) dr =

∫
(R × pM) dr, we have, in general, j(can) , (R × pM) [43].

Note that TE and TM modes and quasilinearly polarized HE and EH hybrid modes have no
angular momentum. Therefore, we consider below only quasicircularly polarized HE and EH
hybrid modes.
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For quasicircularly polarized hybrid modes of the fiber, the full mode functions are given by

E = A(r̂er + pϕ̂eϕ + f ẑez)ei f βz+iplϕ,
H = A( f pr̂hr + f ϕ̂hϕ + pẑhz)ei f βz+iplϕ,

(47)

where er,ϕ,z and hr,ϕ,z are the cylindrical components of the reduced electric and magnetic
mode functions e and h for the mode with f = + and p = +, and A is a constant determined
by the power of the field. The functions er,ϕ,z and hr,ϕ,z depend on r but not on ϕ and z.
For these modes, the densities j(orb)

z and j(spin)
z of the axial components J(orb)

z =
∫

j(orb)
z dr and

J(spin)
z =

∫
j(spin)
z dr of the orbital and spin parts of the angular momentum are found to be

j(orb)
z = |A|2

{
p
ε0
4ω

n2[l |e|2 − 2Im(e∗reϕ)]

+ p
µ0
4ω
[l |h|2 − 2Im(h∗r hϕ)]

} (48)

and
j(spin)
z = |A|2

[
p
ε0
2ω

n2Im(e∗reϕ) + p
µ0
2ω

Im(h∗r hϕ)
]
. (49)

We note that very similar expressions have been derived for the Abraham formulation [42]. It
follows from Eqs. (48) and (49) that the canonical density j(can)

z = j(orb)
z + j(spin)

z of the axial
component Jz of the Minkowski angular momentum is

j(can)
z = |A|2

(
pl
ε0
4ω

n2 |e|2 + pl
µ0
4ω
|h|2

)
. (50)

Meanwhile, the energy per unit length is given by U =
∫

u dr, where

u = |A|2
(
ε0
4

n2 |e|2 + µ0
4
|h|2

)
(51)

is the energy density. Comparison between Eqs. (50) and (51) shows that the angular momentum
per photon in the canonical Minkowski formulation is [11, 43]

j(ph)
z = ~ω

Jz
U
= ~ω

j(can)
z

u
= pl~. (52)

Thus, the Minkowski angular momentum of a photon in a quasicircularly polarized hybrid guided
mode is an integer multiple of ~ [11, 41, 43].

Equations (50)–(52) show that the ratio j(can)
z /u between the canonical axial angular momentum

density j(can)
z and the energy density u does not depend on the radial distance r and the fiber

radius a. In general, the ratio j(orb)
z / j(spin)

z between the orbital and spin components of j(can)
z is a

function of r and a, and the ratio J(orb)
z /J(spin)

z between the orbital and spin components of Jz is a
function of a. Our additional numerical calculations, which are not shown here, confirm these
dependencies.
Note that Eq. (52) is valid for not only quasicircularly polarized HE and EH hybrid guided

modes but also TE and TM guided modes. When we perform similar calculations for radiation
modes ν = (ωβlp), we find a similar result: j(ph)

z = l~.
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