172 research outputs found

    Induction of insulin-like growth factor 2 expression in a mesenchymal cell line co-cultured with an ameloblast cell line

    Get PDF
    Various growth factors have been implicated in the regulation of cell proliferation and differentiation during tooth development. It has been unclear if insulin-like growth factors (IGFs) participate in the epithelium–mesenchyme interactions of tooth development. We previously produced three-dimensional sandwich co-culture systems (SW) containing a collagen membrane that induce the differentiation of epithelial cells. In the present study, we used the SW system to analyze the expression of IGFs and IGFRs. We demonstrate that IGF2 expression in mesenchymal cells was increased by SW. IGF1R transduces a signal; however, IGF2R does not transduce a signal. Recombinant IGF2 induces IGF1R and IGF2R expression in epithelial cells. IGF1R expression is increased by SW; however, IGF2R expression did not increase by SW. Thus, IGF2 signaling works effectively in SW. These results suggest that IGF signaling acts through the collagen membrane on the interaction between the epithelium and mesenchyme. In SW, other cytokines may be suppressed to induce IGF2R induction. Our results suggest that IGF2 may play a role in tooth differentiation

    Glargine and degludec: solution behaviour of higher dose synthetic insulins

    Get PDF
    Single, double and triple doses of the synthetic insulins glargine and degludec currently used in patient therapy are characterised using macromolecular hydrodynamic techniques (dynamic light scattering and analytical ultracentrifugation) in an attempt to provide the basis for improved personalised insulin profiling in patients with diabetes. Using dynamic light scattering and sedimentation velocity in the analytical ultracentrifuge glargine was shown to be primarily dimeric under solvent conditions used in current formulations whereas degludec behaved as a dihexamer with evidence of further association of the hexamers (“multi-hexamerisation”). Further analysis by sedimentation equilibrium showed that degludec exhibited reversible interaction between mono- and-di-hexamer forms. Unlike glargine, degludec showed strong thermodynamic non-ideality, but this was suppressed by the addition of salt. With such large injectable doses of synthetic insulins remaining in the physiological system for extended periods of time, in some case 24–40 hours, double and triple dose insulins may impact adversely on personalised insulin profiling in patients with diabetes

    Evaluation of intracellular signalling pathways in response to insulin-like growth factor I in apoptotic-resistant activated human hepatic stellate cells

    Get PDF
    BACKGROUND: Human hepatic stellate cells have been shown to be resistant to apoptotic stimuli. This is likely dependent on the activation of anti-apoptotic pathways upon transition of these cells to myofibroblast-like cells. In particular, previous studies have demonstrated an increased expression of the anti-apoptotic protein Bcl-2 and a decreased expression of the pro-apoptotic protein Bax during the transition of the hepatic stellate cell phenotype from quiescent to myofibroblast-like cells. However, the role and expression of other key anti-apoptotic and survival pathways elicited by polypeptide growth factors involved in the chronic wound healing process remain to be elucidated. In particular, insulin growth factor-I promotes chemotactic and mitogenic effects in activated human hepatic stellate cells and these effects are mediated by the activation of PI 3-K. The role of insulin growth factor-I as a survival factor in human hepatic stellate cells needs to be substantiated. The aim of this study was to evaluate the involvement of other key anti-apoptotic pathways such as PI-3K/Akt/p-Bad in response to insulin growth factor-I. RESULTS: Insulin growth factor-I induced activation of Akt followed by Bad phosphorylation after 15 minutes of incubation. These effects were PI-3k dependent since selective inhibitors of this molecule, wortmannin and LY294002, inhibited both Akt and Bad phosphorylation. The effect of insulin growth factor-I on the activation of two downstream targets of Akt activation, that is, GSK3 and FHKR, both implicated in the promotion of cell survival was also investigated. Both targets became phosphorylated after 15 minutes of incubation, and these effects were also PI-3K-dependent. Despite the activation of this survival pathway insulin growth factor-I did not have a remarkable biological effect, probably because other insulin growth factor-I-independent survival pathways were already maximally activated in the process of hepatic stellate cell activation. However, after incubation of the cells with a strong apoptotic stimuli such as Fas ligand+cycloheximide, a small percentage of hepatic stellate cells underwent programmed cell death that was partially rescued by insulin growth factor-I. CONCLUSION: In addition to Bcl-2, several other anti-apoptotic pathways are responsible for human hepatic stellate cell resistance to apoptosis. These features are relevant for the progression and limited reversibility of liver fibrosis in humans

    Growth hormone axis in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) in children is associated with dramatic changes in the growth hormone (GH) and insulin-like growth factor (IGF-1) axis, resulting in growth retardation. Moderate-to-severe growth retardation in CKD is associated with increased morbidity and mortality. Renal failure is a state of GH resistance and not GH deficiency. Some mechanisms of GH resistance are: reduced density of GH receptors in target organs, impaired GH-activated post-receptor Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and reduced levels of free IGF-1 due to increased inhibitory IGF-binding proteins (IGFBPs). Treatment with recombinant human growth hormone (rhGH) has been proven to be safe and efficacious in children with CKD. Even though rhGH has been shown to improve catch-up growth and to allow the child to achieve normal adult height, the final adult height is still significantly below the genetic target. Growth retardation may persist after renal transplantation due to multiple factors, such as steroid use, decreased renal function and an abnormal GH–IGF1 axis. Those below age 6 years are the ones to benefit most from transplantation in demonstrating acceleration in linear growth. Newer treatment modalities targeting the GH resistance with recombinant human IGF-1 (rhIGF-1), recombinant human IGFBP3 (rhIGFBP3) and IGFBP displacers are under investigation and may prove to be more effective in treating growth failure in CKD

    Growth Hormone Improves Growth Retardation Induced by Rapamycin without Blocking Its Antiproliferative and Antiangiogenic Effects on Rat Growth Plate

    Get PDF
    Rapamycin, an immunosuppressant agent used in renal transplantation with antitumoral properties, has been reported to impair longitudinal growth in young individuals. As growth hormone (GH) can be used to treat growth retardation in transplanted children, we aimed this study to find out the effect of GH therapy in a model of young rat with growth retardation induced by rapamycin administration. Three groups of 4-week-old rats treated with vehicle (C), daily injections of rapamycin alone (RAPA) or in combination with GH (RGH) at pharmacological doses for 1 week were compared. GH treatment caused a 20% increase in both growth velocity and body length in RGH animals when compared with RAPA group. GH treatment did not increase circulating levels of insulin-like growth factor I, a systemic mediator of GH actions. Instead, GH promoted the maturation and hypertrophy of growth plate chondrocytes, an effect likely related to AKT and ERK1/2 mediated inactivation of GSK3β, increase of glycogen deposits and stabilization of β-catenin. Interestingly, GH did not interfere with the antiproliferative and antiangiogenic activities of rapamycin in the growth plate and did not cause changes in chondrocyte autophagy markers. In summary, these findings indicate that GH administration improves longitudinal growth in rapamycin-treated rats by specifically acting on the process of growth plate chondrocyte hypertrophy but not by counteracting the effects of rapamycin on proliferation and angiogenesis

    Associations of Insulin and Insulin-Like Growth Factors with Physical Performance in Old Age in the Boyd Orr and Caerphilly Studies

    Get PDF
    Objective Insulin and the insulin-like growth factor (IGF) system regulate growth and are involved in determining muscle mass, strength and body composition. We hypothesised that IGF-I and IGF-II are associated with improved, and insulin with worse, physical performance in old age. Methods Physical performance was measured using the get-up and go timed walk and flamingo balance test at 63–86 years. We examined prospective associations of insulin, IGF-I, IGF-II and IGFBP-3 with physical performance in the UK-based Caerphilly Prospective Study (CaPS; n = 739 men); and cross-sectional insulin, IGF-I, IGF-II, IGFBP-2 and IGFBP-3 in the Boyd Orr cohort (n = 182 men, 223 women). Results In confounder-adjusted models, there was some evidence in CaPS that a standard deviation (SD) increase in IGF-I was associated with 1.5% faster get-up and go test times (95% CI: −0.2%, 3.2%; p = 0.08), but little association with poor balance, 19 years later. Coefficients in Boyd Orr were in the same direction as CaPS, but consistent with chance. Higher levels of insulin were weakly associated with worse physical performance (CaPS and Boyd Orr combined: get-up and go time = 1.3% slower per SD log-transformed insulin; 95% CI: 0.0%, 2.7%; p = 0.07; OR poor balance 1.13; 95% CI; 0.98, 1.29; p = 0.08), although associations were attenuated after controlling for body mass index (BMI) and co-morbidities. In Boyd Orr, a one SD increase in IGFBP-2 was associated with 2.6% slower get-up and go times (95% CI: 0.4%, 4.8% slower; p = 0.02), but this was only seen when controlling for BMI and co-morbidities. There was no consistent evidence of associations of IGF-II, or IGFBP-3 with physical performance. Conclusions There was some evidence that high IGF-I and low insulin levels in middle-age were associated with improved physical performance in old age, but estimates were imprecise. Larger cohorts are required to confirm or refute the findings

    Liver-Derived IGF-I Regulates Mean Life Span in Mice

    Get PDF
    Background: Transgenic mice with low levels of global insulin-like growth factor-I (IGF-I) throughout their life span, including pre- and postnatal development, have increased longevity. This study investigated whether specific deficiency of liver-derived, endocrine IGF-I is of importance for life span. Methods and Findings: Serum IGF-I was reduced by approximately 80 % in mice with adult, liver-specific IGF-I inactivation (LI-IGF-I-/- mice), and body weight decreased due to reduced body fat. The mean life span of LI-IGF-I-/- mice (n = 84) increased 10 % vs. control mice (n = 137) (Cox’s test, p,0.01), mainly due to increased life span (16%) of female mice [LI-IGF-I-/- mice (n = 31): 26.761.1 vs. control (n = 67): 23.060.7 months, p,0.001]. Male LI-IGF-I-/- mice showed only a tendency for increased longevity (p = 0.10). Energy expenditure, measured as oxygen consumption during and after submaximal exercise, was increased in the LI-IGF-I-/- mice. Moreover, microarray and RT-PCR analyses showed consistent regulation of three genes (heat shock protein 1A and 1B and connective tissue growth factor) in several body organs in the LI-IGF-I-/- mice. Conclusions: Adult inactivation of liver-derived, endocrine IGF-I resulted in moderately increased mean life span. Body weight and body fat decreased in LI-IGF-I-/- mice, possibly due to increased energy expenditure during exercise. Genes earlier reported to modulate stress response and collagen aging showed consistent regulation, providing mechanisms tha

    IGF-I induced genes in stromal fibroblasts predict the clinical outcome of breast and lung cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin-like growth factor-1 (IGF-I) signalling is important for cancer initiation and progression. Given the emerging evidence for the role of the stroma in these processes, we aimed to characterize the effects of IGF-I on cancer cells and stromal cells separately.</p> <p>Methods</p> <p>We used an <it>ex vivo </it>culture model and measured gene expression changes after IGF-I stimulation with cDNA microarrays. <it>In vitro </it>data were correlated with <it>in vivo </it>findings by comparing the results with published expression datasets on human cancer biopsies.</p> <p>Results</p> <p>Upon stimulation with IGF-I, breast cancer cells and stromal fibroblasts show some common and other distinct response patterns. Among the up-regulated genes in the stromal fibroblasts we observed a significant enrichment in proliferation associated genes. The expression of the IGF-I induced genes was coherent and it provided a basis for the segregation of the patients into two groups. Patients with tumours with highly expressed IGF-I induced genes had a significantly lower survival rate than patients whose tumours showed lower levels of IGF-I induced gene expression (<it>P </it>= 0.029 - Norway/Stanford and <it>P </it>= 7.96e-09 - NKI dataset). Furthermore, based on an IGF-I induced gene expression signature derived from primary lung fibroblasts, a separation of prognostically different lung cancers was possible (<it>P </it>= 0.007 - Bhattacharjee and <it>P </it>= 0.008 - Garber dataset).</p> <p>Conclusion</p> <p>Expression patterns of genes induced by IGF-I in primary breast and lung fibroblasts accurately predict outcomes in breast and lung cancer patients. Furthermore, these IGF-I induced gene signatures derived from stromal fibroblasts might be promising predictors for the response to IGF-I targeted therapies.</p> <p>See the related commentary by Werner and Bruchim: <url>http://www.biomedcentral.com/1741-7015/8/2</url></p

    Cancer Risk in Diabetic Patients Treated with Metformin: A Systematic Review and Meta-analysis

    Get PDF
    BACKGROUND: A growing body of evidence has suggested that metformin potentially reduces the risk of cancer. Our objective was to enhance the precision of estimates of the effect of metformin on the risk of any-site and site-specific cancers in patients with diabetes. METHODS/PRINCIPAL FINDINGS: We performed a search of MEDLINE, EMBASE, ISI Web of Science, Cochrane Library, and ClinicalTrials.gov for pertinent articles published as of October 12, 2011, and included them in a systematic review and meta-analysis. We calculated pooled risk ratios (RRs) for overall cancer mortality and cancer incidence. Of the 21,195 diabetic patients reported in 6 studies (4 cohort studies, 2 RCTs), 991 (4.5%) cases of death from cancer were reported. A total of 11,117 (5.3%) cases of incident cancer at any site were reported among 210,892 patients in 10 studies (2 RCTs, 6 cohort studies, 2 case-control studies). The risks of cancer among metformin users were significantly lower than those among non-metformin users: the pooled RRs (95% confidence interval) were 0.66 (0.49-0.88) for cancer mortality, 0.67 (0.53-0.85) for all-cancer incidence, 0.68 (0.53-0.88) for colorectal cancer (n = 6), 0.20 (0.07-0.59) for hepatocellular cancer (n = 4), 0.67 (0.45-0.99) for lung cancer (n = 3). CONCLUSION/SIGNIFICANCE: The use of metformin in diabetic patients was associated with significantly lower risks of cancer mortality and incidence. However, this analysis is mainly based on observational studies and our findings underscore the more need for long-term RCTs to confirm this potential benefit for individuals with diabetes
    corecore