9 research outputs found

    Can monophagous specialists mediate host plant choices in generalist planthoppers (Hemiptera: Delphacidae)?

    Get PDF
    A preference experiment was set up with two planthopper species (Hemiptera: Delphacidae) to test the influence of competition on host plant choice. The delphacid Javesella pellucida was chosen as a generalist and the rarer Ribautodelphax imitans as a monophagous specialist, which feeds on the grass, tall fescue Schedonorus arundinaceus. In the absence of the specialist, the generalist showed a marked preference for tall fescue. In some experiments, however, the introduction of the specialist resulted in a shift of preference to an alternative plant if the specialist was established prior to the introduction of the generalist. This experiment supports the hypothesis that specialist herbivores can potentially alter the host plant choices of generalists, which may lead to differing host plant use patterns in insect communities

    SKEWNESS AND PERMUTATION

    Full text link
    The skewness criterion of phylogenetic structure in data is too sensitive to character state frequencies, is not sensitive enough to number of characters (degree of corroboration) and relies on counts of arbitrarily-resolved bifurcating trees. For these reasons it can give misleading results. Permutation tests lack those drawbacks and can be performed quickly by using approximate parsimony calculations, but the test based on minimal tree length can imply strong structure in ambiguous data. A more satisfactory test is obtained by using a support measure which takes multiple trees into account.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73640/1/j.1096-0031.1992.tb00071.x.pd

    Identifying potentially invasive non-native marine and brackish water species for the Arabian Gulf and Sea of Oman

    No full text
    Invasive non‐native species (NNS) are internationally recognized as posing a serious threat to global biodiversity, economies and human health. The identification of invasive NNS is already established, those that may arrive in the future, their vectors and pathways of introduction and spread, and hotspots of invasion are important for a targeted approach to managing introductions and impacts at local, regional and global scales. The aim of this study was to identify which marine and brackish NNS are already present in marine systems of the northeastern Arabia area (Arabian Gulf and Sea of Oman) and of these which ones are potentially invasive, and which species have a high likelihood of being introduced in the future and negatively affect biodiversity. Overall, 136 NNS were identified, of which 56 are already present in the region and a further 80 were identified as likely to arrive in the future, including fish, tunicates, invertebrates, plants and protists. The Aquatic Species Invasiveness Screening Kit (AS‐ISK) was used to identify the risk of NNS being (or becoming) invasive within the region. Based on the AS‐ISK basic risk assessment (BRA) thresholds, 36 extant and 37 horizon species (53.7% of all species) were identified as high risk. When the impact of climate change on the overall assessment was considered, the combined risk score (BRA+CCA) increased for 38.2% of all species, suggesting higher risk under warmer conditions, including the highest‐risk horizon NNS the green crab Carcinus maenas, and the extant macro‐alga Hypnea musciformis. This is the first horizon‐scanning exercise for NNS in the region, thus providing a vital baseline for future management. The outcome of this study is the prioritization of NNS to inform decision‐making for the targeted monitoring and management in the region to prevent new bio‐invasions and to control existing species, including their potential for spread
    corecore