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Abstract. 1. A preference experiment was set up with two planthopper species (Hemiptera: 6 

Delphacidae) to test the influence of competition on host plant choice.  7 

  2. The delphacid Javesella pellucida was chosen as a generalist, and the rarer Ribautodelphax imitans 8 

as a monophagous specialist, which feeds on the grass, tall fescue Schedonorus arundinaceus.  9 

  3. In the absence of the specialist, the generalist showed a marked preference for tall fescue. In some 10 

experiments however, the introduction of the specialist resulted in a shift of preference to an alternative 11 

plant, if the specialist was established prior to the introduction of the generalist.  12 

  4. This experiment supports the hypothesis that, specialist herbivores can potentially alter the host 13 

plant choices of generalists. Which may lead to differing host plant use patterns in insect communities.  14 
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 17 

Introduction 18 

Interspecific interactions are important because they mediate community composition and have far 19 

reaching impacts on the long term stability of complex insect-plant networks, and how they are 20 

structured (Frank van Veen et al., 2005; Denno & Kaplan, 2007; Kaplan & Denno, 2007). Studies of 21 

direct competition, particularly among phytophagous groups, have largely been focussed on fitness, 22 

fecundity rates, growth and survival (reviewed by: Denno et al., 1995; Kaplan & Denno, 2007). 23 

Competition however, can affect factors not solely attributed to community and population fitness, such 24 

as host plant and microhabitat use, and position on plants (Ferrenberg & Denno, 2003). 25 

Within phytophagous insect communities, generalists and specialists coexist (Bernays, 1998), 26 

with the majority of species being specialist (Tallamy, 2004). Moreover, most studies of competition 27 

between species, specialist or generalist, centre on those directly sharing resources (Denno & Kaplan, 28 

2007; Kaplan & Denno, 2007; Ali & Agrawal, 2012); with little work carried out on how competition 29 

affects host plant utilisation. The majority of previous work focussed on host displacement, where non-30 



native species have displaced their native counterparts (Kenis et al., 2009) or where there is resulting 31 

niche shift or death of an outcompeted species under experimental conditions (Kaplan & Denno, 2007). 32 

In order to understand other aspects of the roles that specialists have on generalists, there is a need for 33 

more experimental work. 34 

Two-species experiments are useful models because they can elucidate, potential community 35 

effects, at a level more accurately measured under controlled conditions, rather than more observational 36 

field based studies (Kaplan & Denno, 2007). This paper looks at one such system, an interaction 37 

between two co-occurring grass feeding planthopper species (Hemiptera: Auchenorrhyncha: 38 

Delphacidae), and the influence of one species feeding on the other’s preferred host within mesocosms. 39 

The species used were a generalist Javesella pellucida (Fab.) (Nickel & Remane, 2002) and a specialist, 40 

Ribautodelphax imitans (Ribaut.) which is only known to feed on tall fescue Schedonorus arundinaceus 41 

(Schreb.) (den Bieman, 1987; Nickel & Remane, 2002; JNCC, 2010;  Dittrich, 2016; Dittrich & Helden, 42 

2016). It was hypothesised, that because the specialist was adapted to utilising one grass species 43 

efficiently it would drive a host plant shift in the generalist. Thus, testing the paradigm that there is a 44 

potential trade-off between using many resources adequately, and being able to move between them 45 

and avoid competition, versus being able to use one resource better than all others, thus outcompeting 46 

any potential competitors (McPeek, 1996; Noriyuki & Osawa, 2012). We tested this with experiments 47 

in which we observed the host choice of the two delphacid species in single and mixed species culture. 48 

Methods 49 

In order to determine the life cycles and abundance of the test specialist R. imitans and the test generalist 50 

J. pellucida bi-monthly randomised suction samples were taken on Coe Fen, Cambridge, UK 51 

(52.198885, 0.118247) April – October 2011, consisting of 40 x 10 local subsamples each (full details 52 

can be found in Dittrich, 2016; Dittrich & Helden, 2016). Each sub sample consisted of one full power 53 

16 second suck with a Vortis™ suction sampler (Arnold, 1994; Brook et al., 2008). The catch was 54 

emptied into a canvas sweep net and all adult Auchenorrhyncha (both Cicadellidae and Delphacidae) 55 

were removed by pooter for later identification. Throughout 2011 live specimens were also obtained 56 

for insect cultures, and the offspring following the F2 generation used in these experiments.  57 

A host preference experiment was set up using two grass species, tall fescue S. arundinaceus 58 

and Yorkshire fog Holcus lanatus (L.) within mesocosms. The latter plant was chosen because it was 59 

the second most common plant on the study site (after tall fescue), and one to which the generalist had 60 

a strong positive response in laboratory trials (Dittrich, 2016). Tall fescue was chosen because of the 61 

host plant relationships with the specialist (Dittrich, 2016; Dittrich & Helden, 2016). Approximately 10 62 

tall fescue and Yorkshire fog seeds were planted 3cm apart in round clear polyethylene terephthalate 63 

900ml [60x150mm] containers with 5 micron mesh affixed to the top held in place with an elastic band, 64 



preventing insect escape. Growth was thinned to a pair of plants, one of  each species, and the 65 

experiments started when plants had three tillers of growth. There were two experimental treatments 66 

used; one where the specialist species were allowed to first settle on plants, before the generalist species 67 

was added, and one where the generalist species were allowed to establish on plants before the specialist 68 

was added.  69 

 In the first test (generalists established) eight mesocosms were set up; in each 10 generalists 70 

were allowed to establish themselves. After one week, 10 specialists were added to those mesocosms 71 

containing the generalists. The host plant choice of the generalists were recorded immediately before 72 

and 48 hours following this introduction. Planthoppers were observed to move quite readily between 73 

their feeding positions through the course of a day, so a period of 48 hours was considered a reasonable 74 

interval between recording. 75 

For the second test (specialists established), eight mesocosms were set up, each with 10 76 

specialists, which were allowed to establish for one week, after which 10 Generalists were then added. 77 

The host plant choices were recorded immediately before and 48 hours after introduction of the 78 

generalist.  79 

A difference in the feeding preference of generalist was tested before and after the addition of 80 

the allospecific competitor within the same experimental mesocosm, and between tests where the 81 

generalist was added first and where it was added last [at equal density].  All statistics were performed 82 

using R (R Development Core Team, 2013). T-tests were used, assuming equal variance, with all effect 83 

sizes provided with 95% confidence intervals. An analysis of variance was used to check for differences 84 

in tall fescue preference between experiments in the absence of allospecifics between all tests. 85 

Results 86 

The numbers of adult generalist J. pellucida recorded at Coe Fen during 2011 followed an almost 87 

identical phenological pattern to the specialist R. imitans. However, as expected they were fewer in 88 

number (Figure 1). 89 

In the absence of specialists, generalists showed an overall choice preference for tall fescue 90 

where a mean proportion of 0.66 (95% CI = 0.57, 0.75) of the individuals settled. The preference for 91 

tall fescue did not differ from this average, for generalists between experiments when allospecifics were 92 

absent (F2,19.= 029, p = 0.972). On Yorkshire fog mean proportions of 0.34 (95% CI = 0.25, 0.43) of 93 

individuals settled. A significant difference in proportions between host plants of 0.32 (95% CI = 0.26, 94 

0.57; t15 = 5.45,  p < 0.001; Figure 2a).  95 

There was no difference in the proportion of generalists on alternate host plants, after the 96 

addition of the specialist to mesocosms where generalists were already established (non-significant 97 



mean difference of 0.06, 95% CI = -0.12, 0.54; t15 = 0:60; p = 0.559). However overall preference for 98 

tall fescue changed, in experiments where specialists were established on plants prior to their 99 

introduction. When generalists were added to experimental arenas with specialists already established, 100 

there was a marked change in preference, with a mean proportion of 0.23 (95% CI = 0.09, 0.37) 101 

individuals found on tall fescue. A significant reduction in difference in proportions of 0.41 (95% CI = 102 

0.35, 0.77;t15 = 13.70; p < 0.001).  103 

Generalist feeding preference between conditions where they were established first versus last 104 

in the presence of the specialist (at equal density) demonstrated an overall proportional reduction in 105 

preference for tall fescue of 0.36 (95% CI = 0.15, 0.58, t15 = 3.7982, p = 0.003, figure 2b). 106 

Discussion 107 

When established before the generalist, the specialist planthopper R. imitans affected the host plant 108 

preference of the generalist J. pellucida,  supporting our hypothesis. However, this pattern was not 109 

apparent if the generalist established first, where there was no change in preference.  Both species adult 110 

phenology is similar, and adults are spatiotemporally sympatric in the field (Dittrich et al., 2013; 111 

Dittrich & Helden, 2016), although the egg incubation periods for the specialist R. imitans, may be 112 

slightly quicker (Raatikainen & others, 1967; Dittrich, 2016). Faster development may lead to earlier 113 

establishment on food plants, and in some species is indicative of competitive advantage, or numerical 114 

dominance (Krijger et al., 2001; Hunter & Yeargan, 2014). Specialist species dictating the specific 115 

feeding niches of others, based on their own feeding ecology however, may provide a broader 116 

explanation as to how generalists and specialists coexist within insect herbivore communities.  117 

Host choice mediated by interspecific interactions, are not widely studied. However, it may 118 

have much farther-reaching implications for understanding how insect herbivore communities are 119 

constructed, and how generalist and specialist interactions help to shape them. Of the two study species 120 

R. imitans is rare, and J. pellucida common, and it stands to reason that where the two coexist the 121 

community position of J. pellucida may be different to sites where the two species do not coexist. 122 

Moreover due to the rarity of R. imitans, it is likely that the two species co-occur less frequently than 123 

when J. pellucida - the very widespread generalist - is found without R. imitans (Le Quesne, 1960; 124 

Gaston, 1994; Nickel, 2003). If most species in grassland communities are monophagous and rare, 125 

particularly in the case of the planthoppers (Delphacidae) (Gaston, 2010; Denno & Perfect, 2012), it is 126 

likely that these interactions play a part in shaping how communities of herbivorous insects differ from 127 

one location to the next, and between a range of different hosts. 128 

The lottery hypothesis proposed by Chesson and Warner (1981) in which temporal 129 

environmental fluctuations leads to the coexistence of competing species, is supported here. In our paper 130 

the competing specialist is at an advantage if it arrives first. However, in systems where non-equilibrium 131 



dynamics are at play, the recruits to vacant space may vary in time, and it is these fluctuations which 132 

enable coexistence (Munday, 2004). Similar colonisation competition trade-offs, where disturbances 133 

shape community structure may be common, such as in the heavily disturbed grasslands that our study 134 

species were found (Levins and Culver, 1971; Beisner et al., 2003; Munday, 2004). Conversely, as 135 

grasslands are one of our most human impacted habitats, the interactions that are described within this 136 

paper may decrease in their frequency, together with insect biodiversity, as disturbance increases. 137 

The importance of monophagous herbivore species within communities is not unstudied (e.g. 138 

Harrison et al., 2008; Mouillot et al., 2013). However, the range of roles that these species fill is not 139 

fully understood, as highlighted by the finding of our work. It may be the case that rarer insect specialists 140 

have an important role in modifying the host plant choices of generalists. The influence of one species 141 

on how others utilise feeding location on single hosts is known to some extent (Denno et al., 2003; 142 

Ferrenberg & Denno, 2003), and how direct competition affects the fitness of species through direct 143 

plant mediated and indirect effects is also well studied (Denno et al., 1995; Kaplan & Denno, 2007). 144 

This case of host-mediated choice, however, is unique and warrants further investigation, particularly 145 

in field studies and presents an interesting line of enquiry, that may enable a greater understanding of 146 

wider community effects. 147 
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