208 research outputs found

    Genome-wide identification of direct HBx genomic targets

    Get PDF
    Background: The Hepatitis B Virus (HBV) HBx regulatory protein is required for HBV replication and involved in HBV-related carcinogenesis. HBx interacts with chromatin modifying enzymes and transcription factors to modulate histone post-translational modifications and to regulate viral cccDNA transcription and cellular gene expression. Aiming to identify genes and non-coding RNAs (ncRNAs) directly targeted by HBx, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) to analyse HBV recruitment on host cell chromatin in cells replicating HBV. Results: ChIP-Seq high throughput sequencing of HBx-bound fragments was used to obtain a high-resolution, unbiased, mapping of HBx binding sites across the genome in HBV replicating cells. Protein-coding genes and ncRNAs involved in cell metabolism, chromatin dynamics and cancer were enriched among HBx targets together with genes/ncRNAs known to modulate HBV replication. The direct transcriptional activation of genes/miRNAs that potentiate endocytosis (Ras-related in brain (RAB) GTPase family) and autophagy (autophagy related (ATG) genes, beclin-1, miR-33a) and the transcriptional repression of microRNAs (miR-138, miR-224, miR-576, miR-596) that directly target the HBV pgRNA and would inhibit HBV replication, contribute to HBx-mediated increase of HBV replication. Conclusions: Our ChIP-Seq analysis of HBx genome wide chromatin recruitment defined the repertoire of genes and ncRNAs directly targeted by HBx and led to the identification of new mechanisms by which HBx positively regulates cccDNA transcription and HBV replication

    Ten simple rules for making training materials FAIR

    Get PDF
    Author summary: Everything we do today is becoming more and more reliant on the use of computers. The field of biology is no exception; but most biologists receive little or no formal preparation for the increasingly computational aspects of their discipline. In consequence, informal training courses are often needed to plug the gaps; and the demand for such training is growing worldwide. To meet this demand, some training programs are being expanded, and new ones are being developed. Key to both scenarios is the creation of new course materials. Rather than starting from scratch, however, it’s sometimes possible to repurpose materials that already exist. Yet finding suitable materials online can be difficult: They’re often widely scattered across the internet or hidden in their home institutions, with no systematic way to find them. This is a common problem for all digital objects. The scientific community has attempted to address this issue by developing a set of rules (which have been called the Findable, Accessible, Interoperable and Reusable [FAIR] principles) to make such objects more findable and reusable. Here, we show how to apply these rules to help make training materials easier to find, (re)use, and adapt, for the benefit of all

    No Evidence of Persisting Unrepaired Nuclear DNA Single Strand Breaks in Distinct Types of Cells in the Brain, Kidney, and Liver of Adult Mice after Continuous Eight-Week 50 Hz Magnetic Field Exposure with Flux Density of 0.1 mT or 1.0 mT

    Get PDF
    BACKGROUND: It has been hypothesized in the literature that exposure to extremely low frequency electromagnetic fields (50 or 60 Hz) may lead to human health effects such as childhood leukemia or brain tumors. In a previous study investigating multiple types of cells from brain and kidney of the mouse (Acta Neuropathologica 2004; 107: 257-264), we found increased unrepaired nuclear DNA single strand breaks (nDNA SSB) only in epithelial cells of the choroid plexus in the brain using autoradiographic methods after a continuous eight-week 50 Hz magnetic field (MF) exposure of adult mice with flux density of 1.5 mT. METHODS: In the present study we tested the hypothesis that MF exposure with lower flux densities (0.1 mT, i.e., the actual exposure limit for the population in most European countries, and 1.0 mT) shows similar results to those in the previous study. Experiments and data analysis were carried out in a similar way as in our previous study. RESULTS: Continuous eight-week 50 Hz MF exposure with 0.1 mT or 1.0 mT did not result in increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice. MF exposure with 1.0 mT led to reduced unscheduled DNA synthesis (UDS) in epithelial cells in the choroid plexus of the fourth ventricle in the brain (EC-CP) and epithelial cells of the cortical collecting duct in the kidney, as well as to reduced mtDNA synthesis in neurons of the caudate nucleus in the brain and in EC-CP. CONCLUSION: No evidence was found for increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT

    Standing balance in persistent whiplash: A comparison between subjects with and without dizziness

    Get PDF
    Objective: Dizziness and unsteadiness, associated with altered balance, are frequent complaints in subjects suffering persistent whiplash associated disorders. Research has been inconclusive with respect to possible aetiology. This study assessed balance responses in subjects with whiplash associated disorders, taking into account several possible causes

    Construction of Vascular Tissues with Macro-Porous Nano-Fibrous Scaffolds and Smooth Muscle Cells Enriched from Differentiated Embryonic Stem Cells

    Get PDF
    Vascular smooth muscle cells (SMCs) have been broadly used for constructing tissue-engineered blood vessels. However, the availability of mature SMCs from donors or patients is very limited. Derivation of SMCs by differentiating embryonic stem cells (ESCs) has been reported, but not widely utilized in vascular tissue engineering due to low induction efficiency and, hence, low SMC purity. To address these problems, SMCs were enriched from retinoic acid induced mouse ESCs with LacZ genetic labeling under the control of SM22α promoter as the positive sorting marker in the present study. The sorted SMCs were characterized and then cultured on three-dimensional macro-porous nano-fibrous scaffolds in vitro or implanted subcutaneously into nude mice after being seeded on the scaffolds. Our data showed that the LacZ staining, which reflected the corresponding SMC marker SM22α expression level, was efficient as a positive selection marker to dramatically enrich SMCs and eliminate other cell types. After the sorted cells were seeded into the three-dimensional nano-fibrous scaffolds, continuous retinoic acid treatment further enhanced the SMC marker gene expression level while inhibited pluripotent maker gene expression level during the in vitro culture. Meanwhile, after being implanted subcutaneously into nude mice, the implanted cells maintained the positive LacZ staining within the constructs and no teratoma formation was observed. In conclusion, our results demonstrated the potential of SMCs derived from ESCs as a promising cell source for therapeutic vascular tissue engineering and disease model applications

    Contact heat evoked potentials using simultaneous EEG and fMRI and their correlation with evoked pain

    Get PDF
    BACKGROUND: The Contact Heat Evoked Potential Stimulator (CHEPS) utilises rapidly delivered heat pulses with adjustable peak temperatures to stimulate the differential warm/heat thresholds of receptors expressed by Adelta and C fibres. The resulting evoked potentials can be recorded and measured, providing a useful clinical tool for the study of thermal and nociceptive pathways. Concurrent recording of contact heat evoked potentials using electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) has not previously been reported with CHEPS. Developing simultaneous EEG and fMRI with CHEPS is highly desirable, as it provides an opportunity to exploit the high temporal resolution of EEG and the high spatial resolution of fMRI to study the reaction of the human brain to thermal and nociceptive stimuli. METHODS: In this study we have recorded evoked potentials stimulated by 51° C contact heat pulses from CHEPS using EEG, under normal conditions (baseline), and during continuous and simultaneous acquisition of fMRI images in ten healthy volunteers, during two sessions. The pain evoked by CHEPS was recorded on a Visual Analogue Scale (VAS). RESULTS: Analysis of EEG data revealed that the latencies and amplitudes of evoked potentials recorded during continuous fMRI did not differ significantly from baseline recordings. fMRI results were consistent with previous thermal pain studies, and showed Blood Oxygen Level Dependent (BOLD) changes in the insula, post-central gyrus, supplementary motor area (SMA), middle cingulate cortex and pre-central gyrus. There was a significant positive correlation between the evoked potential amplitude (EEG) and the psychophysical perception of pain on the VAS. CONCLUSION: The results of this study demonstrate the feasibility of recording contact heat evoked potentials with EEG during continuous and simultaneous fMRI. The combined use of the two methods can lead to identification of distinct patterns of brain activity indicative of pain and pro-nociceptive sensitisation in healthy subjects and chronic pain patients. Further studies are required for the technique to progress as a useful tool in clinical trials of novel analgesics

    Modulation in voluntary neural drive in relation to muscle soreness

    Get PDF
    The aim of this study was to investigate whether (1) spinal modulation would change after non-exhausting eccentric exercise of the plantar flexor muscles that produced muscle soreness and (2) central modulation of the motor command would be linked to the development of muscle soreness. Ten healthy subjects volunteered to perform a single bout of backward downhill walking exercise (duration 30 min, velocity 1 ms−1, negative grade −25%, load 12% of body weight). Neuromuscular test sessions [H-reflex, M-wave, maximal voluntary torque (MVT)] were performed before, immediately after, as well as 1–3 days after the exercise bout. Immediately after exercise there was a −15% decrease in MVT of the plantar flexors partly attributable to an alteration in contractile properties (−23% in electrically evoked mechanical twitch). However, MVT failed to recover before the third day whereas the contractile properties had significantly recovered within the first day. This delayed recovery of MVT was likely related to a decrement in voluntary muscle drive. The decrease in voluntary activation occurred in the absence of any variation in spinal modulation estimated from the H-reflex. Our findings suggest the development of a supraspinal modulation perhaps linked to the presence of muscle soreness

    Enriched Population of PNS Neurons Derived from Human Embryonic Stem Cells as a Platform for Studying Peripheral Neuropathies

    Get PDF
    BACKGROUND: The absence of a suitable cellular model is a major obstacle for the study of peripheral neuropathies. Human embryonic stem cells hold the potential to be differentiated into peripheral neurons which makes them a suitable candidate for this purpose. However, so far the potential of hESC to differentiate into derivatives of the peripheral nervous system (PNS) was not investigated enough and in particular, the few trials conducted resulted in low yields of PNS neurons. Here we describe a novel hESC differentiation method to produce enriched populations of PNS mature neurons. By plating 8 weeks hESC derived neural progenitors (hESC-NPs) on laminin for two weeks in a defined medium, we demonstrate that over 70% of the resulting neurons express PNS markers and 30% of these cells are sensory neurons. METHODS/FINDINGS: Our method shows that the hNPs express neuronal crest lineage markers in a temporal manner, and by plating 8 weeks hESC-NPs into laminin coated dishes these hNPs were promoted to differentiate and give rise to homogeneous PNS neuronal populations, expressing several PNS lineage-specific markers. Importantly, these cultures produced functional neurons with electrophysiological activities typical of mature neurons. Moreover, supporting this physiological capacity implantation of 8 weeks old hESC-NPs into the neural tube of chick embryos also produced human neurons expressing specific PNS markers in vivo in just a few days. Having the enriched PNS differentiation system in hand, we show for the first time in human PNS neurons the expression of IKAP/hELP1 protein, where a splicing mutation on the gene encoding this protein causes the peripheral neuropathy Familial Dysautonomia. CONCLUSIONS/SIGNIFICANCE: We conclude that this differentiation system to produce high numbers of human PNS neurons will be useful for studying PNS related neuropathies and for developing future drug screening applications for these diseases

    Plasma and dietary carotenoid, retinol and tocopherol levels and the risk of gastric adenocarcinomas in the European prospective investigation into cancer and nutrition

    Get PDF
    Despite declining incidence rates, gastric cancer (GC) is a major cause of death worldwide. Its aetiology may involve dietary antioxidant micronutrients such as carotenoids and tocopherols. The objective of this study was to determine the association of plasma levels of seven common carotenoids, their total plasma concentration, retinol and α- and γ-tocopherol, with the risk of gastric adenocarcinoma in a case–control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC), a large cohort involving 10 countries. A secondary objective was to determine the association of total sum of carotenoids, retinol and α-tocopherol on GCs by anatomical subsite (cardia/noncardia) and histological subtype (diffuse/intestinal). Analytes were measured by high-performance liquid chromatography in prediagnostic plasma from 244 GC cases and 645 controls matched by age, gender, study centre and date of blood donation. Conditional logistic regression models adjusted by body mass index, total energy intake, smoking and Helicobacter pylori infection status were used to estimate relative cancer risks. After an average 3.2 years of follow-up, a negative association with GC risk was observed in the highest vs the lowest quartiles of plasma β-cryptoxanthin (odds ratio (OR)=0.53, 95% confidence intervals (CI)=0.30–0.94, Ptrend=0.006), zeaxanthin (OR=0.39, 95% CI=0.22–0.69, Ptrend=0.005), retinol (OR=0.55, 95% CI=0.33–0.93, Ptrend=0.005) and lipid-unadjusted α-tocopherol (OR=0.59, 95% CI=0.37–0.94, Ptrend=0.022). For all analytes, no heterogeneity of risk estimates or significant associations were observed by anatomical subsite. In the diffuse histological subtype, an inverse association was observed with the highest vs lowest quartile of lipid-unadjusted α-tocopherol (OR=0.26, 95% CI=0.11–0.65, Ptrend=0.003). These results show that higher plasma concentrations of some carotenoids, retinol and α-tocopherol are associated with reduced risk of GC
    corecore