26 research outputs found

    Full-fat insect meals in ruminant nutrition: in vitro rumen fermentation characteristics and lipid biohydrogenation

    Get PDF
    BACKGROUND: The most used protein sources in ruminant nutrition are considered as having negative impacts in terms of environmental sustainability and competition with human nutrition. Therefore, the investigation of alternative and sustainable feedstuffs is becoming a priority in ruminant production systems. RESULTS: This trial was designed to evaluate eight full-fat insect meals (Acheta domesticus – ACD; Alphitobius diaperinus – ALD; Blatta lateralis – BL; Gryllus bimaculatus – GB; Grylloides sygillatus – GS; Hermetia illucens – HI; Musca domestica – MD; and Tenebrio molitor – TM) as potential protein and lipid sources in ruminant nutrition. Fermentation parameters and fatty acids (FA) of rumen digesta after 24-h in vitro ruminal incubation of the tested insect meals were measured and compared with those of three plant-based meals (soybean meal, rapeseed meal and sunflower meal) and fishmeal (FM). Similarly to FM, the insect meals led to a significantly lower total gas production (on average, 1.75 vs. 4.64 mmol/g dry matter—DM), methane production (on average, 0.33 vs. 0.91 mmol/g DM), volatile FA production (on average, 4.12 vs. 7.53 mmol/g DM), and in vitro organic matter disappearance (on average, 0.32 vs. 0.59 g/g) than those observed for the plant meals. The insect meals also led to lower ammonia of rumen fluid, when expressed as a proportion of total N (on average, 0.74 vs. 0.52 for the plant and insect meals, respectively), which could be an advantage provided that intestinal digestibility is high. Differences in ruminal fermentation parameters between the insect meals could be partially explained by their chitin, crude protein and ether extract contents, as well as by their FA profile. In particular, high content of polyunsaturated FA, or C12:0 (in HI), seems to partially inhibit the ruminal fermentations. CONCLUSIONS: The tested full-fat insect meals appear to be potentially an interesting protein and lipid source for ruminants, alternative to the less sustainable and commonly used ones of plant origin. The FA profile of the rumen digesta of ACD, ALD, GB, GS and TM, being rich in n-6 polyunsaturated FA, could be interesting to improve the quality of ruminant-derived food products. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40104-022-00792-2

    Nouvelle modélisation de la rugosité et de la constante diélectrique du sol et leur effet sur le signal radar rétrodiffusé

    No full text
    International audienceIn the last twenty years, important improvements have been shown in backscattering simulations over rough bare soils. However, we still observe for many cases large discrepancies between models and real radar data. In this paper, we propose to illustrate two solutions to improve analysis of radar signal behaviour, by introduction of new approaches for roughness and dielectric constant descriptions. In recent years, the presence of a new type of agricultural surface tillage, used for the sowing of wheat and corn, has been observed with increasing frequency. It illustrates less roughly ploughed soils, with a greater quantity of small clods distributed over the soil surface. In this paper, a new description of such rough agricultural surfaces is proposed. It is based on a composite model, including a classical surface, represented by an exponential correlation function, together with random cloddy structure. This description enables volumetric structures to be introduced over the soil's surface. A numerical moment modelling method, based on integral equations, is used to evaluate the contribution of clods to the radar backscattering behaviour of agricultural surfaces. It is found that the presence of clods explains the very small correlation lengths which are often found in cloddy agricultural fields. The classical approach, in which the surface is described by a correlation function only, based on two statistical parameters, rms height and correlation length, over-estimates the backscattering coefficients when compared to an approach that includes the clods. This overestimation is often observed with real radar data for such fields. For dielectric constant modelling, our analysis is based on a large number of radar measurements acquired during different experimental campaigns (Orgeval'94, Pays de Caux'98, 99). We propose a dielectric constant model, based on the combination of contributions from both soil and air fractions. This modelling clearly reveals the joint influence of the air and soil phases, in backscattering measurements over rough surfaces with large clods. A relationship is established between the soil fraction and soil roughness, using the Integral Equation Model (IEM), fitted to real radar data. Finally, the influence of the air fraction on the linear relationship between moisture and the backscattered radar signal is discussed.Dans ce papier, une nouvelle approche a été introduite pour la modélisation du signal radar. Cette approche utilise une nouvelle description de la rugosité de surface et de la constante diélectrique du sol

    Soil moisture profile effect on radar signal measurement

    No full text
    International audienceThe objective of this paper is to analyze the behaviour of a backscattered signal according to soil moisture depth over bare soils. Analysis based on experimental vertical moisture profiles and ASAR/ENVISAT measurements has been carried out. A modified IEM model with three permittivity layers (0-1cm, 1-2cm, 2-5cm) has been developed and used in this study. Results show a small effect of moisture profile on the backscattered signal (less than 0.5dB). However, measurements and simulations have provided a more detailed insight into the behaviour of the radar signal and have shown that it was important to consistently use the same protocol when performing ground truth measurements of soil moisture

    Nutritive composition, carotenoid, tocopherol and tannin contents of cover crops used as forage plants for ruminants

    No full text
    Nutritive composition, carotenoid, tocopherol and tannin contents of cover crops used as forage plants for ruminants. 12. International Meeting on Mountain Chees

    Effects of elevated CO<sub>2</sub> and extreme climatic events on forage quality and in vitro rumen fermentation in permanent grassland

    No full text
    International audienceAbstract. The aim of this study was to analyze changes in botanical and chemical composition, as well as in vitro rumen fermentation characteristics of an upland grassland exposed to climate changes in controlled CO2 concentration, air temperature and precipitation conditions. Grassland was exposed to a future climate scenario coupled with CO2 treatments (390 and 520 ppm) from the beginning of spring. During summer, an extreme climatic event (ECE; 2 weeks of a +6 ∘C increase in temperature, together with severe drought) was applied and then followed by a recovery period. Three cutting dates were considered, i.e. in April, June and November. The results indicate that increases in greenness, nitrogen (N) content and changes in water-soluble carbohydrate profile in association with botanical composition changes for the November cut lead to higher in vitro dry matter degradability (IVDMD) in the rumen. The neutral detergent fiber : nitrogen (NDF:N) ratio appeared to be a key driver of forage quality, which was affected in opposite ways by elevated CO2 and ECE, with a strong impact on rumen fermentation. Atmospheric CO2 concentration in interaction with ECE tended to affect IVDMD, indicating that the effects of elevated CO2 and ECE may partly offset each other. Our findings indicate that the various factors of climate change need to be considered together in order to properly characterize their effects on forage quality and use by ruminants

    Effect of increasing the proportion of chicory in forage-based diets on intake and digestion by sheep

    No full text
    International audienceThere is a lot of evidence that chicory could be a highly palatable and nutritious source of forage for ruminants, well adapted to climate change and dry conditions in summer, thanks to its resistance to drought and high water content. This study aimed to describe the effect of incorporating chicory to ryegrass or to a ryegrass–white clover mixture on feeding behaviour, digestive parameters, nitrogen (N) balance and methane (CH4) emissions in sheep. In total, three swards of ryegrass, white clover and chicory were established and managed in a manner ensuring the forage use at a constant vegetative stage throughout the experiment. In all, four dietary treatments (pure ryegrass; binary mixture: 50% ryegrass–50% chicory; ternary mixture: 50% ryegrass–25% white clover–25% chicory; and pure chicory) were evaluated in a 4×4 replicated Latin square design with eight young castrated Texel sheep. Each experimental period consisted of an 8-day diet adaptation phase, followed by a 6-day measuring phase during which intake dynamics, chewing activity, digestibility, rumen liquid passage rate, fermentation end-products, N balance and CH4 emissions were determined. Data were analysed using a mixed model and orthogonal contrasts were used to detect the potential associative effects between ryegrass and chicory. The daily voluntary dry matter intake was lower for pure ryegrass than for diets containing chicory (P<0.001) and increased quadratically from 1.39 to 1.74 kg/day with increasing proportion of chicory. Huge positive quadratic effects (P<0.001) between ryegrass and chicory were detected on eating time and eating rate just after feeding indicating an increase of the motivation to eat with mixtures, whereas rumination activity decreased linearly with the proportion of chicory (P<0.001). The organic matter digestibility was similar among treatments (around 80%), but a strong positive quadratic P<0.001) effect was observed on liquid passage rate suggesting that chicory allowed fast particle breakdown in the rumen. Animals fed with the ryegrass–white clover–chicory mixture had the higher urinary N losses (P<0.001), whereas retained N per day or per g N intake was greater when the proportion of chicory was at least 50% (P<0.001) being ~40% greater than for the other treatments. The CH4 yield was lower with pure chicory than with the other treatments (P<0.001) for which emissions were similar. In conclusion, mixing ryegrass and chicory in equal proportions produces a synergy on voluntary intake and an improved N use efficiency likely due to complementarity in chemical composition, increased motivation to eat and faster ruminal particle breakdown
    corecore