5 research outputs found

    Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos.

    Full text link
    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development

    Functional Characterization of Xenopus Thyroid Hormone Transporters mct8 and oatp1c1.

    Full text link
    Xenopus is an excellent model for studying thyroid hormone signaling as it undergoes thyroid hormone-dependent metamorphosis. Despite the fact that receptors and deiodinases have been described in Xenopus, membrane transporters for these hormones are yet to be characterized. We cloned Xenopus monocarboxylate transporter 8 (mct8) and organic anion-transporting polypeptide 1C1 (oatpc1c1), focusing on these two transporters given their importance for vertebrate brain development. Protein alignment and bootstrap analysis showed that Xenopus mct8 and oatp1c1 are closer to their mammalian orthologs than their teleost counterparts. We functionally characterized the two transporters using a radiolabeled hormones in vitro uptake assay in COS-1 cells. Xenopus mct8 was found to actively transport both T3 and T4 bidirectionally. As to the thyroid precursor molecules, diiodotyrosine (DIT) and monoiodotyrosine (MIT), both human and Xenopus mct8, showed active efflux, but no influx. Again similar to humans, Xenopus oatp1c1 transported T4 but not T3, MIT, or DIT. We used reverse transcription quantitative polymerase chain reaction and in situ hybridization to characterize the temporal and spatial expression of mct8 and oatp1c1 in Xenopus. Specific expression of the transporter was observed in the brain, with increasingly strong expression as development progressed. In conclusion, these results show that Xenopus thyroid hormone transporters are functional and display marked spatiotemporal expression patterns. These features make them interesting targets to elucidate their roles in determining thyroid hormone availability during embryonic development

    Parallel biotransformation of tetrabromobisphenol A in Xenopus laevis and mammals: Xenopus as a model for endocrine perturbation studies.

    No full text
    The flame retardant tetrabromobisphenol A (TBBPA) is a high production flame retardant that interferes with thyroid hormone (TH) signaling. Despite its rapid metabolism in mammals, TBBPA is found in significant amounts in different tissues. Such findings highlight first a need to better understand the effects of TBBPA and its metabolites and second the need to develop models to address these questions experimentally. We used Xenopus laevis tadpoles to follow radiolabeled (14)C-TBBPA uptake and metabolism. Extensive and rapid uptake of radioactivity was observed, tadpoles metabolizing > 94% of (14)C-TBBPA within 8 h. Four metabolites were identified in water and tadpole extracts: TBBPA-glucuronide, TBBPA-glucuronide-sulfate, TBBPA-sulfate, and TBBPA-disulfate. These metabolites are identical to the TBBPA conjugates characterized in mammals, including humans. Most radioactivity (> 75%) was associated with sulfated conjugates. The antithyroid effects of TBBPA and the metabolites were compared using two in vivo measures: tadpole morphology and an in vivo tadpole TH reporter gene assay. Only TBBPA, and not the sulfated metabolites, disrupted thyroid signaling. Moreover, TBBPA treatment did not affect expression of phase II enzymes involved in TH metabolism, suggesting that the antithyroid effects of TBBPA are not due to indirect effects on TH metabolism. Finally, we show that only the parent TBBPA inhibits T3-induced transactivation in cells expressing human, zebrafish, or X. laevis TH receptor, TRα. We conclude, first, that perturbation of thyroid signaling by TBBPA is likely due to rapid direct action of the parent compound, and second, that Xenopus is an excellent vertebrate model for biotransformation studies, displaying homologous pathways to mammals

    Novel chemical tyrosine functionalization of adeno-associated virus improves gene transfer efficiency in liver and retina

    No full text
    Decades of biological and clinical research have led to important advances in recombinant adeno-associated viruses rAAV-based gene therapy gene therapy. However, several challenges must be overcome to fully exploit the potential of rAAV vectors. Innovative approaches to modify viral genome and capsid elements have been used to overcome issues such as unwanted immune responses and off-targeting. While often successful, genetic modification of capsids can drastically reduce vector yield and often fails to produce vectors with properties that translate across species. Here, we describe a chemical bioconjugation strategy to modify tyrosine residues on AAV capsids using specific ligands, thereby circumventing the need to genetically engineer the capsid sequence. Aromatic electrophilic substitution of the phenol ring of tyrosine residues on AAV capsids improved the in vivo transduction efficiency of rAAV2 vectors in both liver and retinal targets. This tyrosine bioconjugation strategy represents an innovative technology for the engineering of rAAV vectors for human gene therapy
    corecore