213 research outputs found

    The Concept of Temperature in the Modern Physics

    Get PDF
    The physical quantity "temperature" is a cornerstone of thermodynamics and statistical physics. But it is necessary to mention that very frequently the scientists forget about the conditions to be satisfied in order to introduce "temperature" in macroscopic physics. In the present paper the short introduction to the classical concept of temperature for macroscopic equilibrium systems will be given. The concept of "spin temperature" in condensed matter physics will be reviewed and the advantages of thermodynamic approach to the problems of magnetism will be illustrated. Finally, the concept of temperature will be discussed regarding the nanoscale physics and non-extensive systems.Comment: 4 figures, InTech class file included, accepted for publication in "Thermodynamics - Systems in Equilibrium and Non-Equilibrium" ISBN 979-953-307-047-5, edited by J. C. M. Piraj\'a

    From the arrow of time in Badiali's quantum approach to the dynamic meaning of Riemann's hypothesis

    Get PDF
    The novelty of the Jean Pierre Badiali last scientific works stems to a quantum approach based on both (i) a return to the notion of trajectories (Feynman paths) and (ii) an irreversibility of the quantum transitions. These iconoclastic choices find again the Hilbertian and the von Neumann algebraic point of view by dealing statistics over loops. This approach confers an external thermodynamic origin to the notion of a quantum unit of time (Rovelli Connes' thermal time). This notion, basis for quantization, appears herein as a mere criterion of parting between the quantum regime and the thermodynamic regime. The purpose of this note is to unfold the content of the last five years of scientific exchanges aiming to link in a coherent scheme the Jean Pierre's choices and works, and the works of the authors of this note based on hyperbolic geodesics and the associated role of Riemann zeta functions. While these options do not unveil any contradictions, nevertheless they give birth to an intrinsic arrow of time different from the thermal time. The question of the physical meaning of Riemann hypothesis as the basis of quantum mechanics, which was at the heart of our last exchanges, is the backbone of this note.Comment: 13 pages, 2 figure

    Fractal geometry, information growth and nonextensive thermodynamics

    Full text link
    This is a study of the information evolution of complex systems by geometrical consideration. We look at chaotic systems evolving in fractal phase space. The entropy change in time due to the fractal geometry is assimilated to the information growth through the scale refinement. Due to the incompleteness of the state number counting at any scale on fractal support, the incomplete normalization ipiq=1\sum_ip_i^q=1 is applied throughout the paper, where qq is the fractal dimension divided by the dimension of the smooth Euclidean space in which the fractal structure of the phase space is embedded. It is shown that the information growth is nonadditive and is proportional to the trace-form ipiipiq\sum_ip_i-\sum_ip_i^q which can be connected to several nonadditive entropies. This information growth can be extremized to give power law distributions for these non-equilibrium systems. It can also be used for the study of the thermodynamics derived from Tsallis entropy for nonadditive systems which contain subsystems each having its own qq. It is argued that, within this thermodynamics, the Stefan-Boltzmann law of blackbody radiation can be preserved.Comment: Final version, 10 pages, no figures, Invited talk at the international conference NEXT2003, 21-28 september 2003, Villasimius (Cagliari), Ital

    A mathematical structure for the generalization of the conventional algebra

    Full text link
    An abstract mathematical framework is presented in this paper as a unification of several deformed or generalized algebra proposed recently in the context of generalized statistical theories intended to treat certain complex thermodynamic or statistical systems. It is shown that, from mathematical point of view, any bijective function can be used in principle to formulate an algebra in which the conventional algebraic rules are generalized

    Stable local bases for multivariate spline spaces

    Get PDF
    We present an algorithm for constructing stable local bases for the spaces Srd(Δ) of multivariate polynomial splines of smoothness r⩾1 and degree d⩾r2n+1 on an arbitrary triangulation Δ of a bounded polyhedral domain Ω⊂n, n⩾2
    corecore