29 research outputs found

    Current results of the PERSEE testbench: the cophasing control and the polychromatic null rate

    Full text link
    Stabilizing a nulling interferometer at a nanometric level is the key issue to obtain deep null depths. The PERSEE breadboard has been designed to study and optimize the operation of a cophased nulling bench in the most realistic disturbing environment of a space mission. This presentation focuses on the current results of the PERSEE bench. In terms of metrology, we cophased at 0.33 nm rms for the piston and 80 mas rms for the tip/tilt (0.14% of the Airy disk). A Linear Quadratic Gaussian (LQG) control coupled with an unsupervised vibration identification allows us to maintain that level of correction, even with characteristic vibrations of nulling interferometry space missions. These performances, with an accurate design and alignment of the bench, currently lead to a polychromatic unpolarised null depth of 8.9E-6 stabilized at 3E-7 on the [1.65-2.45] \mum spectral band (37% bandwidth).Comment: 17 pages, 10 figures, proceedings of the Optics+Photonics SPIE conference, San Diego, 201

    Simbol-X: a formation flight mission with an unprecedented imaging capability in the 0.5-80 keV energy band

    Get PDF
    The discovery of X-ray emission from cosmic sources in the 1960s has opened a new powerful observing window on the Universe. In fact, the exploration of the X-ray sky during the 70s-90s has established X-ray astronomy as a fundamental field of astrophysics. Today, the emission from astrophysical sources is by large best known at energies below 10 keV. The main reason for this situation is purely technical since grazing incidence reflection has so far been limited to the soft X-ray band. Above 10 keV all the observations have been obtained with collimated detectors or coded mask instruments. To make a leap step forward in Xray astronomy above 10 keV it is necessary to extend the principle of focusing X ray optics to higher energies, up to 80 keV and beyond. To this end, ASI and CNES are presently studying the implementation of a X-ray mission called Simbol-X. Taking advantage of emerging technology in mirror manufacturing and spacecraft formation flying, Simbol-X will push grazing incidence imaging up to 80 keV and beyond, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. This technological breakthrough will open a new highenergy window in astrophysics and cosmology. Here we will address the problematic of the development for such a distributed and deformable instrument. We will focus on the main performances of the telescope, like angular resolution, sensitivity and source localization. We will also describe the specificity of the calibration aspects of the payload distributed over two satellites and therefore in a not "frozen" configuration

    Simulation of Postsynaptic Glutamate Receptors Reveals Critical Features of Glutamatergic Transmission

    Get PDF
    Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors

    PERSEE: description of a new concept for nulling interferometry recombination and OPD measurement

    No full text
    International audienceNulling interferometry requires, among other things, a symmetric recombination module and an optical path difference control system. The symmetric recombination stage has been particularly studied over the last ten years and several concepts are now well known. One of them is the "Modified Mach Zehnder" (MMZ) interferometer, proposed by Serabyn and Colavita (2001) [1]. In this paper, we describe a new version of the MMZ beam combiner which provides a deep null signal in the science channel and, at the same time, phase-sensitive signals in the so-called co-phasing channel. From the latter, accurate optical path difference measurements can be derived. This beam combiner works in the 0.8 to 3.3 mum spectral range (0.8 to 1.5 mum for the co-phasing channel and 1.65 to 3.3 mum for the science channel). Both optical functions can be implemented in the same device thanks to an original optical design involving dedicated phase shifts. In this paper, we describe its principle and detail the optical and mechanical design

    Influence of the input-stage architecture on the in-laboratory test of a mid-infrared interferometer: application to the ALOHA up-conversion interferometer in the L band

    No full text
    International audienceIn the framework of the Astronomical Light Optical Hybrid Analysis (ALOHA) laboratory mid-infrared (MIR) up-conversion fibred interferometer in the L band, we report on the influence of the input-stage architecture. Using an amplitude division set-up in the visible or near-infrared is a straightforward choice in most cases. In the MIR context, the results are slightly different and we show that a wavefront division set-up is needed. These in-laboratory principle experiments allow us to measure a reliable 88 per cent instrumental contrast with high flux and to obtain fringes from faint sources at 3.5  ÎŒm with a spectral bandwith of 37 nm converted to 817 nm. An equivalent limiting L-band magnitude around 3.9, equivalent to 3.0 fW nm -1, could be demonstrated on 1 m class telescopes. This opens the possibility of planning future on-sky tests at the Center for High Angular Resolution Astronomy (CHARA) array and of predicting the performance attained
    corecore