94,990 research outputs found

    Combining high pressure and coherent diffraction: a first feasibility test

    Full text link
    We present a first experiment combining high pression and coherent X-ray diffraction. By using a dedicated diamond anvil cell, we show that the degree of coherence of the X-ray beam is preserved when the X-ray beam passes through the diamond cell. This observation opens the possibility of studying the dynamics of slow fluctuations under high pressure.Comment: 3 pages, 2 figures, GHPR 2009 conferenc

    HI emission from the red giant Y CVn with the VLA and FAST

    Full text link
    Imaging studies with the VLA have revealed HI emission associated with the extended circumstellar shells of red giants. We analyse the spectral map obtained on Y CVn, a J-type carbon star on the AGB. The HI line profiles can be interpreted with a model of a detached shell resulting from the interaction of a stellar outflow with the local interstellar medium. We reproduce the spectral map by introducing a distortion along a direction corresponding to the star's motion in space. We then use this fitting to simulate observations expected from the FAST radiotelescope, and discuss its potential for improving ourdescription of the outer regions of circumstellar shells.Comment: accepted for publication in RA

    Phase controlled superconducting proximity effect probed by tunneling spectroscopy

    Get PDF
    Using a dual-mode STM-AFM microscope operating below 50mK we measured the Local Density of States (LDoS) along small normal wires connected at both ends to superconductors with different phases. We observe that a uniform minigap can develop in the whole normal wire and in the superconductors near the interfaces. The minigap depends periodically on the phase difference. The quasiclassical theory of superconductivity applied to a simplified 1D model geometry accounts well for the data.Comment: Accepted for publication in Physical Review Letter

    Stability of the Bragg glass phase in a layered geometry

    Full text link
    We study the stability of the dislocation-free Bragg glass phase in a layered geometry consisting of coupled parallel planes of d=1+1 vortex lines lying within each plane, in the presence of impurity disorder. Using renormalization group, replica variational calculations and physical arguments we show that at temperatures T<TGT<T_G the 3D Bragg glass phase is always stable for weak disorder. It undergoes a weakly first order transition into a decoupled 2D vortex glass upon increase of disorder.Comment: RevTeX. Submitted to EP

    On the Redshift Distribution of Gamma Ray Bursts in the Swift Era

    Full text link
    A simple physical model for long-duration gamma ray bursts (GRBs) is used to fit the redshift (z) and the jet opening-angle distributions measured with earlier GRB missions and with Swift. The effect of different sensitivities for GRB triggering is sufficient to explain the difference in the z distributions of the pre-Swift and Swift samples, with mean redshifts of ~1.5 and ~2.7, respectively. Assuming that the emission properties of GRBs do not change with time, we find that the data can only be fitted if the comoving rate-density of GRB sources exhibits positive evolution to z >~ 3-5. The mean intrinsic beaming factor of GRBs is found to range from ~34-42, with the Swift average opening half-angle ~10 degree, compared to the pre-Swift average of ~7 degree. Within the uniform jet model, the GRB luminosity function is proportional to L^{-3.25}_*, as inferred from our best fit to the opening angle distribution. Because of the unlikely detection of several GRBs with z <~ 0.25, our analysis indicates that low redshift GRBs represent a different population of GRBs than those detected at higher redshifts. Neglecting possible metallicity effects on GRB host galaxies, we find that ~1 GRB occurs every 600,000 yrs in a local L_* spiral galaxy like the Milky Way. The fraction of high-redshift GRBs is estimated at 8-12% and 2.5-6% at z >= 5 and z >= 7, respectively, assuming continued positive evolution of the GRB rate density to high redshifts.Comment: Accepted for publication in ApJ. The paper contains 29 pages and 24 figure

    A New Phase of Tethered Membranes: Tubules

    Full text link
    We show that fluctuating tethered membranes with {\it any} intrinsic anisotropy unavoidably exhibit a new phase between the previously predicted ``flat'' and ``crumpled'' phases, in high spatial dimensions dd where the crumpled phase exists. In this new "tubule" phase, the membrane is crumpled in one direction but extended nearly straight in the other. Its average thickness is RGLνtR_G\sim L^{\nu_t} with LL the intrinsic size of the membrane. This phase is more likely to persist down to d=3d=3 than the crumpled phase. In Flory theory, the universal exponent νt=3/4\nu_t=3/4, which we conjecture is an exact result. We study the elasticity and fluctuations of the tubule state, and the transitions into it.Comment: 4 pages, self-unpacking uuencoded compressed postscript file with figures already inside text; unpacking instructions are at the top of file. To appear in Phys. Rev. Lett. November (1995
    corecore