270 research outputs found
RUNNERāS STRIDE ANALYSIS UNDER FIELD CONDITIONS
The purpose of this study was to analyse the strides of middle distance runners using a new ambulatory gait analysis system adapted to field and track conditions. Nine middle distance runners performed a locomotor test which consisted of three step-tests close to their anaerobic threshold with an increase of 0.5 m.s-1 between each step-test. The increase in velocity was correlated to an increase in stride length (p< 0.001), and a decrease of stride symmetry and regularity (p< 0.05) and a decrease of left and right stance duration (p< 0.05). Wavelet analysis provided a pictorial description of gait particularities which could be of interest for trainers or practitioners
Non-intrusive and structure preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging
We introduce a new class of integrators for stiff ODEs as well as SDEs. These
integrators are (i) {\it Multiscale}: they are based on flow averaging and so
do not fully resolve the fast variables and have a computational cost
determined by slow variables (ii) {\it Versatile}: the method is based on
averaging the flows of the given dynamical system (which may have hidden slow
and fast processes) instead of averaging the instantaneous drift of assumed
separated slow and fast processes. This bypasses the need for identifying
explicitly (or numerically) the slow or fast variables (iii) {\it
Nonintrusive}: A pre-existing numerical scheme resolving the microscopic time
scale can be used as a black box and easily turned into one of the integrators
in this paper by turning the large coefficients on over a microscopic timescale
and off during a mesoscopic timescale (iv) {\it Convergent over two scales}:
strongly over slow processes and in the sense of measures over fast ones. We
introduce the related notion of two-scale flow convergence and analyze the
convergence of these integrators under the induced topology (v) {\it Structure
preserving}: for stiff Hamiltonian systems (possibly on manifolds), they can be
made to be symplectic, time-reversible, and symmetry preserving (symmetries are
group actions that leave the system invariant) in all variables. They are
explicit and applicable to arbitrary stiff potentials (that need not be
quadratic). Their application to the Fermi-Pasta-Ulam problems shows accuracy
and stability over four orders of magnitude of time scales. For stiff Langevin
equations, they are symmetry preserving, time-reversible and Boltzmann-Gibbs
reversible, quasi-symplectic on all variables and conformally symplectic with
isotropic friction.Comment: 69 pages, 21 figure
Approximating a Wavefunction as an Unconstrained Sum of Slater Determinants
The wavefunction for the multiparticle Schr\"odinger equation is a function
of many variables and satisfies an antisymmetry condition, so it is natural to
approximate it as a sum of Slater determinants. Many current methods do so, but
they impose additional structural constraints on the determinants, such as
orthogonality between orbitals or an excitation pattern. We present a method
without any such constraints, by which we hope to obtain much more efficient
expansions, and insight into the inherent structure of the wavefunction. We use
an integral formulation of the problem, a Green's function iteration, and a
fitting procedure based on the computational paradigm of separated
representations. The core procedure is the construction and solution of a
matrix-integral system derived from antisymmetric inner products involving the
potential operators. We show how to construct and solve this system with
computational complexity competitive with current methods.Comment: 30 page
Charge and current-sensitive preamplifiers for pulse shape discrimination techniques with silicon detectors
New charge and current-sensitive preamplifiers coupled to silicon detectors
and devoted to studies in nuclear structure and dynamics have been developed
and tested. For the first time shapes of current pulses from light charged
particles and carbon ions are presented. Capabilities for pulse shape
discrimination techniques are demonstrated.Comment: 14 pages, 12 figures, to be published in Nucl. Inst. Meth.
t(10;17)(p15;q21) ZMYND11/MBTD1
Short communication on on t(10;17)(p15;q21) ZMYND11/MBTD1, with data on clinics, and the genes implicated
Detecting the influence of initial pioneers on succession at deep-sea vents
Ā© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e50015, doi:10.1371/journal.pone.0050015.Deep-sea hydrothermal vents are subject to major disturbances that alter the physical and chemical environment and eradicate the resident faunal communities. Vent fields are isolated by uninhabitable deep seafloor, so recolonization via dispersal of planktonic larvae is critical for persistence of populations. We monitored colonization near 9Ā°50ā²N on the East Pacific Rise following a catastrophic eruption in order to address questions of the relative contributions of pioneer colonists and environmental change to variation in species composition, and the role of pioneers at the disturbed site in altering community structure elsewhere in the region. Pioneer colonists included two gastropod species: Ctenopelta porifera, which was new to the vent field, and Lepetodrilus tevnianus, which had been rare before the eruption but persisted in high abundance afterward, delaying and possibly out-competing the ubiquitous pre-eruption congener L. elevatus. A decrease in abundance of C. porifera over time, and the arrival of later species, corresponded to a decrease in vent fluid flow and in the sulfide to temperature ratio. For some species these successional changes were likely due to habitat requirements, but other species persisted (L. tevnianus) or arrived (L. elevatus) in patterns unrelated to their habitat preferences. After two years, disturbed communities had started to resemble pre-eruption ones, but were lower in diversity. When compared to a prior (1991) eruption, the succession of foundation species (tubeworms and mussels) appeared to be delayed, even though habitat chemistry became similar to the pre-eruption state more quickly. Surprisingly, a nearby community that had not been disturbed by the eruption was invaded by the pioneers, possibly after they became established in the disturbed vents. These results indicate that the post-eruption arrival of species from remote locales had a strong and persistent effect on communities at both disturbed and undisturbed vents.The authors received funding from National Science Foundation grant OCE-0424953, WHOI Deep Ocean Exploration Institute, WHOI Summer Student Fellow program, Woods Hole Partnership in Education Program, IFREMER and CNRS, Fondation TOTAL Chair Extreme Marine Environment, Biodiversity and Global change
- ā¦