36,941 research outputs found

    Reaching for Mediocrity: Competition and Stagnation in Pharmaceutical Innovation

    Get PDF
    Patents might incentivize invention but they do not guarantee firms will invest in projects that maximize social utility. We model how risk-neutral firms’ ability to obtain substantial private returns on marginal new technologies causes them to “reach for mediocrity” by investing in socially-suboptimal projects, even in the presence of competition and new entrants. Focusing primarily on pharmaceutical innovation, we analyze various policy interventions to solve this underinvestment problem. In particular, we describe a new approach to patents – a value based patent system, which ties patent protection to the underlying invention’s social value – and show how it incentivizes socially-optimal innovation

    Spontaneous Formation of Stable Capillary Bridges for Firming Compact Colloidal Microstructures in Phase Separating Liquids: A Computational Study

    Full text link
    Computer modeling and simulations are performed to investigate capillary bridges spontaneously formed between closely packed colloidal particles in phase separating liquids. The simulations reveal a self-stabilization mechanism that operates through diffusive equilibrium of two-phase liquid morphologies. Such mechanism renders desired microstructural stability and uniformity to the capillary bridges that are spontaneously formed during liquid solution phase separation. This self-stabilization behavior is in contrast to conventional coarsening processes during phase separation. The volume fraction limit of the separated liquid phases as well as the adhesion strength and thermodynamic stability of the capillary bridges are discussed. Capillary bridge formations in various compact colloid assemblies are considered. The study sheds light on a promising route to in-situ (in-liquid) firming of fragile colloidal crystals and other compact colloidal microstructures via capillary bridges

    Kondo Resonance of a Microwave Photon

    Full text link
    We emulate renormalization group models, such as the Spin-Boson Hamiltonian or the anisotropic Kondo model, from a quantum optics perspective by considering a superconducting device. The infra-red confinement involves photon excitations of two tunable transmission lines entangled to an artificial spin-1/2 particle or double-island charge qubit. Focusing on the propagation of microwave light, in the underdamped regime of the Spin-Boson model, we identify a many-body resonance where a photon is absorbed at the renormalized qubit frequency and reemitted forward in an elastic manner. We also show that asymptotic freedom of microwave light is reached by increasing the input signal amplitude at low temperatures which allows the disappearance of the transmission peak.Comment: Final Version: Main text and Supplementary Materia

    Tuning Energy Relaxation along Quantum Hall Channels

    Full text link
    The chiral edge channels in the quantum Hall regime are considered ideal ballistic quantum channels, and have quantum information processing potentialities. Here, we demonstrate experimentally, at filling factor 2, the efficient tuning of the energy relaxation that limits quantum coherence and permits the return toward equilibrium. Energy relaxation along an edge channel is controllably enhanced by increasing its transmission toward a floating ohmic contact, in quantitative agreement with predictions. Moreover, by forming a closed inner edge channel loop, we freeze energy exchanges in the outer channel. This result also elucidates the inelastic mechanisms at work at filling factor 2, informing us in particular that those within the outer edge channel are negligible.Comment: 8 pages including supplementary materia

    A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime

    Full text link
    We present and implement a non-destructive detection scheme for the transition probability readout of an optical lattice clock. The scheme relies on a differential heterodyne measurement of the dispersive properties of lattice-trapped atoms enhanced by a high finesse cavity. By design, this scheme offers a 1st order rejection of the technical noise sources, an enhanced signal-to-noise ratio, and an homogeneous atom-cavity coupling. We theoretically show that this scheme is optimal with respect to the photon shot noise limit. We experimentally realize this detection scheme in an operational strontium optical lattice clock. The resolution is on the order of a few atoms with a photon scattering rate low enough to keep the atoms trapped after detection. This scheme opens the door to various different interrogations protocols, which reduce the frequency instability, including atom recycling, zero-dead time clocks with a fast repetition rate, and sub quantum projection noise frequency stability

    Supersymmetry Without Prejudice at the 7 TeV LHC

    Full text link
    We investigate the model independent nature of the Supersymmetry search strategies at the 7 TeV LHC. To this end, we study the missing-transverse-energy-based searches developed by the ATLAS Collaboration that were essentially designed for mSUGRA. We simulate the signals for ~71k models in the 19-dimensional parameter space of the pMSSM. These models have been found to satisfy existing experimental and theoretical constraints and provide insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. Using backgrounds generated by ATLAS, we find that imprecise knowledge of these estimated backgrounds is a limiting factor in the potential discovery of these models and that some channels become systematics-limited at larger luminosities. As this systematic error is varied between 20-100%, roughly half to 90% of this model sample is observable with significance S>5 for 1 fb^{-1} of integrated luminosity. We then examine the model characteristics for the cases which cannot be discovered and find several contributing factors. We find that a blanket statement that squarks and gluinos are excluded with masses below a specific value cannot be made. We next explore possible modifications to the kinematic cuts in these analyses that may improve the pMSSM model coverage. Lastly, we examine the implications of a null search at the 7 TeV LHC in terms of the degree of fine-tuning that would be present in this model set and for sparticle production at the 500 GeV and 1 TeV Linear Collider.Comment: 51 pages, 26 figure

    Non-minimality of corners in subriemannian geometry

    Get PDF
    We give a short solution to one of the main open problems in subriemannian geometry. Namely, we prove that length minimizers do not have corner-type singularities. With this result we solve Problem II of Agrachev's list, and provide the first general result toward the 30-year-old open problem of regularity of subriemannian geodesics.Comment: 11 pages, final versio

    Polarizabilities of the 87Sr Clock Transition

    Full text link
    In this paper, we propose an in-depth review of the vector and tensor polarizabilities of the two energy levels of the 87Sr clock transition whose measurement was reported in [P. G. Westergaard et al., Phys. Rev. Lett. 106, 210801 (2011)]. We conduct a theoretical calculation that reproduces the measured coefficients. In addition, we detail the experimental conditions used for their measurement in two Sr optical lattice clocks, and exhibit the quadratic behaviour of the vector and tensor shifts with the depth of the trapping potential and evaluate their impact on the accuracy of the clock

    Redshifts from Spitzer Spectra for Optically Faint, Radio Selected Infrared Sources

    Full text link
    Spectra have been obtained with the Infrared Spectrograph on the Spitzer Space Telescope for 18 optically faint sources (R > 23.9,mag) having f(nu) (24um) > 1.0,mJy and having radio detections at 20 cm to a limit of 115 microJy. Sources are within the Spitzer First Look Survey. Redshifts are determined for 14 sources from strong silicate absorption features (12 sources) or strong PAH emission features (2 sources), with median redshift of 2.1. Results confirm that optically faint sources of ~1 mJy at 24um are typically at redshifts z ~ 2, verifying the high efficiency in selecting high redshift sources based on extreme infrared to optical flux ratio, and indicate that 24um sources which also have radio counterparts are not systematically different than samples chosen only by their infrared to optical flux ratios. Using the parameter q = log[f(nu)(24um)/f(nu)(20 cm)] 17 of the 18 sources observed have values of 0<q<1, in the range expected for starburst-powered sources, but only a few of these show strong PAH emission as expected from starbursts, with the remainder showing absorbed or power-law spectra consistent with an AGN luminosity source. This confirms previous indications that optically faint Spitzer sources with f(nu)(24um) > 1.0mJy are predominately AGN and represent the upper end of the luminosity function of dusty sources at z ~ 2. Based on the characteristics of the sources observed so far, we predict that the nature of sources selected at 24um will change for f(nu)(24um) < 0.5 mJy to sources dominated primarily by starbursts.Comment: Accepted ApJ 20 February 2006, v638 2 issue, 10pages including 3 figure
    • 

    corecore