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Abstract

Patents might incentivize invention but they do not guarantee firms will invest in projects that

maximize social utility. We model how risk-neutral firms’ ability to obtain substantial private

returns on marginal new technologies causes them to “reach for mediocrity” by investing in

socially-suboptimal projects, even in the presence of competition and new entrants. Focusing

primarily on pharmaceutical innovation, we analyze various policy interventions to solve this

underinvestment problem. In particular, we describe a new approach to patents – a value-based

patent system, which ties patent protection to the underlying invention’s social value – and show

how it incentivizes socially-optimal innovation.
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1 Introduction

In a competitive market, research and development is risky because firms must recover up-front

fixed costs through lower future expenses or increased future sales. Unfortunately, R&D is likely

produced in socially-suboptimal quantities due to the knowledge spillovers it generates and the

potential for competitors to free-ride on originators’ efforts. Accordingly, society subsidizes R&D

through direct subsidies and research grants, tax credits and deductions, rewards, and patents

(Grabowski et al. [2015]; Hemel and Ouellette [2013]; Shavell and Van Ypersele [2001]; Kremer

[1998]).

While many scholars have focused on which innovation policies optimally encourage R&D

spending, there has been less focus on the specific R&D activities these firms pursue. Put

differently, firms typically have some choice in their R&D investments. Given this choice, are

they picking socially-optimal R&D projects?

Generally, the profit motive should induce firms to choose R&D projects that society values

highly. But as we show in this paper, sometimes firms are excessively conservative compared

to a social planner when selecting investment projects in innovation markets. The problem is

particularly acute in pharmaceuticals, though our argument could also extend to other markets.

The following section provides empirical motivation for the paper and explains why firms

often invest in marginally beneficial or “me-too” drugs, which are often highly profitable despite

providing minimal marginal social benefits. We then present both discrete- and continuous-

choice models that explain how a firm’s return function – what the firm earns as a function of

an underlying invention’s social value – creates a wedge between its incentives and those of the

social planner. We also show how this wedge can persist even with competition and potential

new entrants into the market.

We then assess how various conventional policy interventions – such as changing the drug

approval threshold, awarding prizes, and assessing lump-sum taxes – might address this discon-

nect between social and private incentives. Among other things, we show that if the threshold

to award a prize is set too low, prizes can result in even lower quality innovation than would

occur in their absence.
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Finally, we model a novel approach to patents – a value-based patent system, where more

socially-valuable inventions receive heightened patent protection (e.g., longer patent duration)

as compared to less socially-valuable ones. We show how a value-based patent system generates

higher-quality innovation than the status quo, while not inadvertently incentivizing low-value

innovation, as would occur with across-the-board increases in patent protection. We close with

a few suggestions on how a value-based patent system might be implemented in practice, refer-

encing other research we are conducting contemporaneously.

2 Prior Literature and Empirical Motivation

Several scholars have recognized problems with marginal or me-too innovation in pharmaceuti-

cals. Jayadev and Stiglitz [2009] claim superior innovative drugs can become unprofitable when

drug companies use better marketing on inferior me-too products. Fojo et al. [2014] similarly

argue that follow-on products can crowd out innovation on new therapeutic targets.1

Me-too drugs are not rare. Régnier [2013] notes that of the 431 new molecular entities

approved by the U.S. Food and Drug Administration (FDA) between 1990 and 2004, 58% had

“therapeutic qualities similar to those of one or more already marketed.” Similarly, Fojo et al.

[2014] observe that out of 71 drugs approved by the FDA between 2002 and 2014 for solid

tumors, “the median gains in progression-free and overall survival (OS) were a very modest

2.5 and 2.1 months, respectively.” And under standards suggested by the American Society

of Clinical Oncology (ASCO) Cancer Research Committee, only 42% of these 71 drugs would

constitute “clinically meaningful improvements.”

Worse, most marginal drugs are not cheap. Figure 1 illustrates the underlying problem.

It summarizes the results for all completed Phase 3 interventional clinical trials with statisti-

cally significant results for treatment of metastatic colorectal cancer (mCRC), as reported at

www.clinicaltrials.gov. The x-axis shows the difference in median overall survival times for

treatment groups as compared to control groups, averaged across all trials for each drug. The

y-axis lists the annual cost of treatment for each drug, estimated using data collected from

1
In contrast, DiMasi and Paquette [2005] suggest most follow-on drugs are developed at the same time as

pioneering drugs. They claim such drugs are not harmful and actually increase therapeutic choice.
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goodRx.com, an online retailer of prescription medication. Averaging across these studies, each

additional month of overall survival costs about $56,000 per year of treatment (and most mCRC

patients undergo multiple years of treatment). Certainly an individual might value one addi-

tional month of life at $56,000 or more. But from a social welfare standpoint, this value greatly

exceeds any reasonable estimate of the average value of an additional month of human life,

especially given the relatively low quality of life for patients with mCRC. See, e.g., Lee et al.

[2009] (estimating the value of a quality-adjusted year of life for patients on dialysis to be about

$129,000). The price charged does not come close to the value delivered.2

Figure 1: Metastatic Colorectal Cancer Drugs: Increments in Average Overall Survival v. Cost

Sources: Overall survival data from clinicaltrials.gov. Cost data estimated using prices on
goodRx.com as of September 2016.

2
Some might wonder if the small difference in median outcomes obscures larger benefits that the treatment

might bestow on certain subpopulations. While this might be possible, it is not reflected in the clinical trial

data. Rather, when one examines Kaplan-Meier curves, which allow one to compare how survival rates vary on

a patent-by-patient basis between treatment and control groups, it is clear the two groups remain relatively close

in terms of overall performance throughout the duration of these studies.
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Why is there this disconnect between the value delivered by pharmaceutical innovation

and the prices charged by innovators? In related work, Sukhatme and Bloche [2018] explore

this phenomenon, highlighting the impact of moral hazard in health insurance markets, a single-

minded focus of regulators and market participants on statistical versus therapeutic significance,

and drug makers’ marketing strategies for follow-on drugs. Most importantly, they highlight the

psychological and political economy factors that make it difficult for payers and regulators to

limit access to technologies that marginally improve outcomes at tremendous cost. Specifically.

once a new medical technology becomes available, a tangle of human psychology, cultural mores,

clinical ethics and stakeholder expectations makes it difficult for payers and regulators to refuse

to pay for such treatment, even if its cost greatly exceeds the benefits it provides. So firms can

earn large private benefits for new medical technologies that improve upon existing treatments,

however barely. Since path-breaking, high-value technologies are often riskier to pursue than

marginally beneficial technologies, firms are skewed toward pursuing inventions that are less

socially valuable. Put differently, the various distortions in pharmaceutical markets that allow

firms to earn outsized private benefits for marginal technologies also induce those firms to

produce such technologies rather than riskier, more socially-valuable therapies.

While other scholars do not appear to have tackled this particular question, they have

modeled somewhat related phenomena. Most notably, Ganuza et al. [2009] model how price-

inelastic doctors, who make drug purchase decisions on behalf of insured patients, induce firms

to invest in follow-on innovations instead of pioneering drugs and encourage them to spend on

persuasive as compared to informative marketing to increase demand for me-too drugs. Focusing

on diseases such as HIV/AIDS, Leoni and Sandroni [2016] model how excessive patent duration

can encourage firms to collude with one another to produce marginal innovations rather than

full cures. González et al. [2016] generate a model of follow-on drugs with patients that are

horizontally and vertically differentiated, and intermediate doctors that act as perfect agents for

the health care system. Antoñanzas et al. [2011] model a game in which pharmaceutical firms

launch product line extensions after their drug patents expire, with “loyal” doctors prescribing

the product line extension and “non-loyal” ones taking into account drug prices. Finally, Bardey

et al. [2010] model a dynamic game with firms, consumers, and regulatory agencies to measure
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how reference pricing – which involves categorizing drugs by class and determining a common

price for that class – can change firms’ dynamic innovation incentives and reduce health.

Our paper builds on this previous literature by adding a new dimension: the risk/return

tradeoff that technology firms face when deciding which investment project to pursue. For

pharmaceuticals, the choice is often between pursuing a follow-on innovation (which might focus

on a known molecular target that has already been successfully targeted by an existing drug)

or pursuing a potentially more beneficial but riskier original innovation. Our model formalizes

and explores the consequences of what recent empirical research by Krieger et al. [2018] shows:

that pharmaceutical companies view incremental innovation as less valuable but much less risky

than more novel, potentially path-breaking innovations.

While we have not found other models of such decisionmaking, other scholars have looked

more generally at how risk and return influence firms’ investment decisions. Notably, Rose-

Ackerman [1991] explored how the risk of bankruptcy can cause firm decisionmakers to sacrifice

expected returns for lower risk.

3 Discrete Choice Model

3.1 Monopolistic environment

We begin with a simple discrete choice model to illustrate why firms might pursue socially-

suboptimal innovation. A risk-neutral representative firm seeks to create a new innovation in a

particular field.3 In this monopolistic environment, we assume the inventor owns a patent on

the new technology and hence has a legal monopoly over its production.

Let X be the realized net social value of the new technology. In other words, it is the

value of the new technology to a social planner.4 Each technology has a threshold, X, and

any technologies whose social value X < X are normalized and assumed to be worth 0 for the

inventor. For simplicity, we assume that technologies with X < X have no social value either,

3
In the pharmaceutical context, one can view the underlying field as a particular drug indication (e.g., first-line

treatment for metastatic colorectal cancer).

4
All private and social values referenced here can either be in aggregate or per capita terms; the intuition of

the model remains the same either way.
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though our results remain the same if we assume the social planner receives some value x for

these inventions.

In some markets, X might be interpreted as the most advanced technology that exists,

or the “state of the art.” In other markets, one can think of X as the threshold below which

a technology provides the firm with no profits. For pharmaceuticals, the latter interpretation

might be more appropriate, where X is the baseline safety/efficacy profile below which the FDA

will not approve a drug, and hence the drug generates no private value.

The returns the inventor receives are not necessarily the same as the social planner. Let

m (X) be the inventor’s profit as a function of the social value of the new technology. Suppose

m (X) takes the following piecewise linear form:

m (X) =

8
>><

>>:

0 for X < X

X + b, for X � X

, in which b � 0

The value b is the guaranteed fixed private return the inventor receives if his technology

meets or exceeds the threshold X. In the context of pharmaceuticals, b is the private benefit firms

receive for producing drugs that barely improve over existing therapies (Sukhatme and Bloche

[2018]). In other contexts, b might be the private cost of producing a new product inferior to the

current state of the art, such as private costs incurred on firm managers and board members if a

product fails and the firm goes bankrupt. When b = 0, there is no distortion and the inventor’s

profit function is the same as the social planner; hence the inventor will choose socially-optimal

projects.

The realized social value of each potential technology the inventor could select is uncertain.

It is represented by a binomial distribution in which with probability p the technology achieves

X̄ > X and with probability 1 � p it falls below X. Assume there are only two choices for

the inventor: a risky project summarized by
�
pH , X̄H

�
and a safe one

�
pL, X̄L

�
in which X̄H >

8



X̄L > X and 0 < pH < pL < 1. Suppose further that pHX̄H > pLX̄L, which implies choosing

the risky project is socially optimal.5

The inventor will pick the project with higher expected private return. Therefore, he will

pick the safe project iff:

(1� pL) ⇤ 0 + pLm
�
X̄L

�
> (1� pH) ⇤ 0 + pHm

�
X̄H

�

() pL
�
X̄L + b

�
> pH

�
X̄H + b

�

() b >
pHX̄H � pLX̄L

pL � pH
⌘ bM > 0 (1)

If the distortion b exceeds the threshold bM , the inventor will pursue the less risky, socially-

suboptimal project. Intuitively, this is because the profit differential between high- and low-value

inventions is not as large for the inventor as it is for the social planner. While an inventor still

receives a higher return if she picks a risky project and the resulting value exceeds X, she has

to trade off that increase in return with the heightened risk of falling below X and earning

nothing. Unlike the social planner, the inventor obtains a fixed benefit b from any innovation

that improves on the status quo, however marginally. Since the inventor receives this “boost”

unconditionally for any invention whose social value exceeds X, and higher-value inventions are

riskier, the inventor might choose a less risky project than the social planner.

3.2 Competitive environment

Next we introduce competition into the environment. First, assume there are two identical

firms that seek to create new innovations in a particular field, with both firms having the same

return function m(X) as before. Both are entitled to produce the underlying technology (i.e.,

neither can exclude the other from production via a patent). Again we assume there are only

two choices for the firms, a risky project
�
pH , X̄H

�
and a safe one

�
pL, X̄L

�
. We have three

cases (due to firms being identical), with the corresponding return matrices specified below:

5
Here we make the standard assumption that a social planner is risk-neutral and seeks to maximize expected

value. We recognize our analysis might yield a different result under other less common approaches, such as

those used in regret theory models in which policymakers choose policies that minimize maximum regret.
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Case 1. Both firms pick the safe projects:

< X X̄L

< X 0, 0 X̄L + b, 0

X̄L 0, X̄L + b X̄L

2 + b, X̄L

2 + b

Case 2. Both firms pick the risky projects:

< X X̄H

< X 0, 0 X̄H + b, 0

X̄H 0, X̄H + b X̄H

2 + b, X̄H

2 + b

Case 3. One firm picks the risky and the other firm picks the safe project:

< X X̄L

< X 0, 0 X̄L + b, 0

X̄H 0, X̄H + b X̄H + b, 0

In other words, the two firms split X̄L (X̄H) if they both pick the low-value (high-value) project

and both are successful, and a firm receives nothing if its competitor achieves a higher-value

outcome than it does.

Note that in our model, b is not whittled down by competition. This is a key assumption

that reflects our underlying view of b – it is a private return that firms receive that is inde-

pendent of the value they deliver, so long as their product exceeds the technology threshold X.

Whether viewed as being driven by patient psychology and political economy (Sukhatme and

Bloche [2018]) or private costs borne by firm managers if a project fails (Rose-Ackerman [1991]),

competition does not diminish b here. Our approach is supported by some empirical evidence in

the pharmaceutical context, which suggests that introduction of new me-drugs might not lower

other related drugs’ prices. See Figure 1; also compare Ekelund and Persson [2003] (introduc-

tion of branded substitutes has little effect on introductory price or price dynamics in Swedish

market) with Lu and Comanor [1998] (more branded substitutes in U.S. market lead to lower
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introductory prices and lower subsequent price increases). At any rate, even if b is reduced in

the real world by competition, the distortion we identify here is possible so long as b remains

sufficiently large, as discussed below.

We look for the condition in which both firms will pick the socially-suboptimal, safe project

in a Nash equilibrium. Conditioning on the other firm picking the safe project, the expected

return for a firm if it also picks the safe project is:

p2L

✓
X̄L

2
+ b

◆
+ (1� pL) pL

�
X̄L + b

�

= pL


X̄L

2
pL + (1� pL) X̄L + b

�

If it picks the risky project, the expected return will be:

pH
�
X̄H + b

�

Therefore, the best response for the firm will be the safe project iff:

pL


X̄L

2
pL + (1� pL) X̄L + b

�
> pH

�
X̄H + b

�

() b >
pHX̄H � pL

h
X̄L

2 pL + (1� pL) X̄L

i

pL � pH
⌘ bO (2)

Notice that bO > bM , which means adding in a competitor raises the threshold over which

a high b will result in a distortion. Still, duopoly only mitigates, and does not eliminate, the

potential problem. If the private distortion b is large enough, both firms will still choose the

socially-suboptimal project.

More generally, we can expand our analysis to n identical competing firms. If n� 1 firms

choose the low-value project, the remaining firm will also choose the low-value project if the

expected return from doing so exceeds the expected return from choosing the high-value project:

pL

n�1X

k=0

✓✓
n� 1

k

◆
pkL (1� pL)

(n�1�k)
◆✓

X̄L

k + 1
+ b

◆
> pH

�
X̄H + b

�
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Multiplying out the left-hand side, we can simplify the first term on that side as follows:

pLX̄L

n�1X

k=0

✓
(n� 1)!

k!(n� 1� k)!
pkL (1� pL)

(n�1�k) 1

k + 1

◆

=

✓
pLX̄L

n

◆ n�1X

k=0

✓
n!

(k + 1)! (n� (k + 1))!
pkL (1� pL)

(n�1�k)
◆

=

✓
pLX̄L

n

◆ nX

j=1

✓
n!

j! (n� j)!
pj�1
L (1� pL)

(n�j)
◆

=

✓
X̄L

n

◆0

@
nX

j=0

✓✓
n

j

◆
pjL (1� pL)

(n�j)
◆
� (1� pL)

n

1

A

=

✓
X̄L

n

◆
(1� (1� pL)

n)

And so the whole equation simplifies to the following condition:

b >
pHX̄H � [1� (1� pL)

n] X̄L

n

pL � pH
⌘ bn (3)

As n ! 1, the second term in the numerator goes to 0, and so:

b >
pHX̄H

pL � pH
⌘ bC

Accordingly, even in a perfectly competitive market, if the private distortion b exceeds the

threshold bC , all firms in the market will still choose the socially-suboptimal project. So no

amount of competition guarantees that firms will choose the social optimum.

3.3 New entrants

Finally, we consider an environment in which a monopolistic incumbent seeks to create a new

innovation while simultaneously facing the threat of competition from a potential entrant. The

entrant chooses between: no entry, entry and pick the safe project, or entry and pick the risky

12



project. The entry cost is c > 0. Assume further that pHX̄H > c, or the expected social value

of the risky project is higher than the entry cost. The return matrix of the game is:

Risky Safe

No entry pH
�
X̄H + b

�
, 0 pL

�
X̄L + b

�
, 0

Entry & Risky p2H

⇣
X̄H

2 + b
⌘
+

pH (1� pH)
�
X̄H + b

�
, pL (1� pH)

�
X̄L + b

�
,

p2H

⇣
X̄H

2 + b
⌘
+ pH

�
X̄H + b

�
� c

pH (1� pH)
�
X̄H + b

�
� c

Entry & Safe p2L

⇣
X̄L

2 + b
⌘
+

pH
�
X̄H + b

�
, pL (1� pL)

�
X̄L + b

�
,

pL (1� pH)
�
X̄L + b

�
� c p2L

⇣
X̄L

2 + b
⌘
+

pL (1� pL)
�
X̄L + b

�
� c

The Nash equilibrium of this game will be (Safe, Entry & Safe) if b > bO. So if the

distortion exceeds the threshold bO, both the entrant and the incumbent will pick the suboptimal

safe choice, as was the case in the duopolistic environment.

4 Continuous Choice Model

Now we generalize the previous model into one in which a firm can choose from a continuous set

of potential R&D projects, with continuous returns. As before, X is the social value of the new

technology with a technology threshold, X, below which the technology has zero private value.

The planner always receives return X from the invention, whether it exceeds the technology

threshold X or not.

The inventor’s profit function m (X) now takes the following piecewise linear form:

m (X) =

8
>><

>>:

0 for X < X

mX + b, for X � X, 0 < m  1, b � 0

As before, b is the guaranteed fixed private return the inventor receives if her technology

meets or exceeds the technology threshold X. m is the return factor the inventor receives

depending on how much her invention’s social value exceeds this threshold.
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Once again, the inventor knows his profit function but not the realized outcome.6 The social

value of each potential technology the inventor could select is represented by a distribution

G
�
X;µ,�2

�
over its social return. Assume that within the inventor’s choice set, G is fully

identified by its mean µ and variance �2 and that G
�
X;µ,�2

�
is fully differentiable with respect

to µ and �2.

Furthermore, as µ increases, so does �2. That is �2 � h (µ), where h0 (µ) � 0, so social

value and risk increase together.

Proposition 4.1. (The planner’s solution) The planner chooses the project with the highest

mean µ. He is indifferent with respect to variance �2.

Proof. This follows immediately from the planner’s risk-neutrality; he does not care about the

variance of the distribution G (X) and only picks projects with the highest mean µ, since his

return is just X.

By contrast, the inventor chooses a technology with mean µ and variance �2 that maximizes

her expected return E (m (X)). This can be written as the following optimization problem:

max
µ,�2

E
⇥
m (X) |µ,�2

⇤

s.t.

�2 � h (µ)

To begin, consider the scenario in which the inventor picks the lowest variance project for

a given µ. In other words, the constraint in the optimization problem binds and �2 = h (µ).

The optimization problem then becomes:

6
We could easily add uncertainty to the inventor’s knowledge of her profit function by adding some symmetrical

noise (e.g., ✏ ⇠ N(0,�2
✏ ) ) to the value of m. But this would not change the results here since the inventor is an

expected utility maximizer, m only enters the optimization problem linearly, and E(m+ ✏) = m.
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max
µ

E [m (X) |µ, h (µ)]

= max
µ

Z

X
(mx+ b) dG (x;µ, h (µ))

() max
µ

Z

X

✓
x+

b

m

◆
dG (x;µ, h (µ))

= max
µ

✓
X +

b

m

◆
[1�G (X;µ, h (µ))] +

Z 1

X
(x�X) dG (x;µ, h (µ))

First-order condition (FOC):

d

dµ
E [m (X) |µ, h (µ)]

=

✓
X +

b

m

◆
d

dµ
[1�G (X;µ, h (µ))] +

d

dµ

Z 1

X
(x�X) dG (x;µ, h (µ))

= �
✓
X +

b

m

◆
G2 (X;µ, h (µ))h0 (µ)�

✓
X +

b

m

◆
G1 (X;µ, h (µ))

+
d

dµ

Z 1

X
(x�X) dG (x;µ, h (µ))

As µ increases, both µ and h (µ) go up. The first term in FOC,

�
�
X + b

m

�
G2 (X;µ, h (µ))h0 (µ), is the partial effect of an increase in variance h (µ) on

G (X;µ, h (µ)). It reflects the chance of falling below the threshold X.

The second term �
�
X + b

m

�
G1 (X;µ, h (µ)) is the partial benefit of higher µ on

G (X;µ, h (µ)). Since increasing µ while keeping �2 constant is equivalent to a first-order

stochastic dominant shift, it reduces the chance of falling below the threshold X. Thus,

G1 (X;µ, h (µ))  0 and �
�
X + b

m

�
G1 (X;µ, h (µ)) � 0.

The third term d
dµ

R1
X (x�X) dG (x;µ, h (µ)) > 0 measures the benefit of a higher µ on

the added reward of obtaining an invention above the threshold, which is an increasing function

of µ.

We can see, therefore, that a sufficient condition for the firm to pick a lower µ than the

social planner is:
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Condition 1.

✓
X +

b

m

◆
G2 (X;µ, h (µ))h0 (µ) �

�
✓
X +

b

m

◆
G1 (X;µ, h (µ)) +

d

dµ

Z 1

X
(x�X) dG (x;µ, h (µ))

Proposition 4.2. If the inventor picks the lowest variance project �2 for a given µ, and Con-

dition 1 is satisfied, then the inventor chooses µM that is strictly lower than that picked by the

planner, µS.

Proof. Follows directly from the discussion above.

Note that Condition 1 can also be written in terms of h0 (µ):

h0 (µ) �
�
�
X + b

m

�
G1 (X;µ, h (µ)) + d

dµ

R1
X (x�X) dG (x;µ, h (µ))

�
X + b

m

�
G2 (X;µ, h (µ))

Written this way, it becomes clear that Condition 1 essentially requires risk to increase

with return steeply enough such that it exceeds a certain threshold. Then, the inventor will

choose a socially-suboptimal project.

We now make the following assumption:

Assumption 1. (Diminishing return to risk) @2

@(�2)2
E
⇥
m (X) |µ,�2

⇤
 0

Assumption 1 requires the return to taking more risks at a given level of µ is decreasing

with �2. This assumption reflects the reality that there are diminishing gains from taking on

more risk for a distribution with a given µ.

With Assumption 1 in place, we can now show the following:

Proposition 4.3. If Condition 1 and Assumption 1 hold, then the inventor will pick the lowest

�2 for any given µ, as well as a socially-suboptimal project. That is, the constraint �2 � h (µ)

will bind, and the inventor’s choice µM < µS.
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Proof. By Assumption 1, @
@�2E

⇥
m (X) |µ,�2

⇤
is non-increasing w.r.t �2. Therefore, if

@
@�2E [m (X) |µ, h (µ)]  0 , then @

@�2E
⇥
m (X) |µ,�2

⇤
 0 for all �2 � h (µ). Since Condi-

tion 1 implies

d

dµ
E [m (X) |µ, h (µ)]  0

() @

@�2
E [m (X) |µ, h (µ)]h0 (µ) +

@

@µ
E [m (X) |µ, h (µ)]  0

Because @
@µE [m (X) |µ, h (µ)] � 0, since it is equivalent to a first-order stochastic dominant

shift, and h0 (µ) � 0 by assumption, we must have @
@�2E [m (X) |µ, h (µ)]  0.

In other words, Condition 1 and Assumption 1 together ensure that the inventor will pick

a project with minimum variance �2 for a given mean µ, and that the project she picks will

have a lower mean µM than what the social planner would pick µS .

5 Policy Interventions

We have shown that even a risk-neutral inventor will pursue a suboptimal technology if the

tradeoff between risk and return rises steeply enough.7 We now explore the comparative statics

of our model. We then discuss four possible policy interventions: an increase in the technology

threshold, a reward for high-value inventions, a tax that disparately penalizes low-value inven-

tions combined with a subsidy that insures against project failure, and a value-based patent

system. We also examine how mismeasurement of model parameters by a policymaker might

affect policy decisions.

5.1 Comparative Statics

In this section, Condition 1 and Assumption 1 are assumed to hold throughout. In terms of

our model, we can see how changes to m, b, and X change the inventor’s choice by deriving the

following comparative static results for these parameters.

7
Note that throughout this discussion we have not relied on any sort of risk-aversion. Adding that to the

analysis would only make the risk/return tradeoff more stark for the inventor, increasing the wedge between the

social planner and the inventor.
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Proposition 5.1. The inventor’s choice of µ is increasing in m.

Proof. Recall the FOC:

�
✓
X +

b

m

◆
G2 (X;µ, h (µ))h0 (µ)�

✓
X +

b

m

◆
G1 (X;µ, h (µ)) +

d

dµ

Z 1

X
(x�X) dG (x;µ, h (µ))

Differentiating the FOC w.r.t m gives us:

b

m2
[G2 (X;µ, h (µ))h0 (µ) +G1 (X;µ, h (µ))] (4)

From Condition 1, we have:

G2 (X;µ, h (µ))h0 (µ) +G1 (X;µ, h (µ)) �
d
dµ

R1
X (x�X) dG (x;µ, h (µ))

�
X + b

m

�

We know the right hand side term > 0 , which implies quantity 4 > 0.

Intuitively, as m increases, the inventor receives more profit than before for each additional

unit of social value that she generates. As such, the inventor has greater incentive to produce

higher social value inventions.

Put differently, one can view m  1 as the proportion of the total welfare generated by

the sale of the product that the firm receives. As m ! 1, the firm gains more of the total social

welfare and consumer surplus goes to 0.

Proposition 5.2. The inventor’s choice of µ is decreasing in b.

Proof. Differentiating the FOC w.r.t b gives us:

� 1

m
[G2 (X;µ, h (µ))h0 (µ) +G1 (X;µ, h (µ))] (5)
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From Condition 1, we have:

G2 (X;µ, h (µ))h0 (µ) +G1 (X;µ, h (µ)) �
d
dµ

R1
X (x�X) dG (x;µ, h (µ))

�
X + b

m

�

We know the right hand side term > 0 , which means quantity 5 < 0.

As b decreases, the inventor’s guaranteed private “boost” from generating any passable

invention (i.e., any invention whose social value exceeds X) decreases. This disparately affects

lower-value inventions, since both high- and low-value inventions receive the same boost. As

such, the private value of high-value inventions relative to low-value ones increases, and the net

marginal benefit from increasing µM goes up.

What if X (i.e., the technology threshold) increases? Differentiating FOC w.r.t X, we

have:

d

dX


d

dµ
E [m (X) |µ, h (µ)]

�
= m

d

dX


d

dµ

Z 1

X

✓
x+

b

m

◆
dG (x;µ, h (µ))

�

= m
d

dµ


d

dX

Z 1

X

✓
x+

b

m

◆
dG (x;µ, h (µ))

�
=

d

dµ
(mX + b) g (X;µ, h (µ))

= (mX + b)
d

dµ
g (X;µ, h (µ)) (6)

where g (.) the pdf of distribution G. We know that (mX + b) > 0. So the effect of

increasing X depends on the sign of d
dµg (X;µ, h (µ)).

Proposition 5.3. If d
dµg (X;µ, h (µ))  0 then the inventor’s choice of µ will be decreasing in

X, and the inventor is more likely to pick a socially-suboptimal innovation as X increases. If
d
dµg (X;µ, h (µ)) > 0 then the inventor’s choice of µ will be increasing in X, and the inventor

is less likely to pick a socially-suboptimal innovation as X increases.

Proof. If d
dµg (X;µ, h (µ))  0, then Condition 1 is more likely to hold as X increases. If

d
dµg (X;µ, h (µ)) > 0, then Condition 1 is less likely to hold as X increases.

So what is the likely sign of d
dµg (X;µ, h (µ))? This will of course depend on the underlying

distribution G. But for many common classes of distributions, the sign is likely to be negative.
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For example, consider the class of exponential distributions. In that case:

g (X;µ, h (µ)) ⌘ 1

µ
e�

X

µ

=) d

dµ
g (X;µ, h (µ)) = � 1

µ2
e�

X

µ +
1

µ

X

µ2
e�

X

µ =
e�

X

µ

µ3
(X � µ) (7)

It is likely that an inventor will pick a project whose expected return µ exceeds the status

quo, X. As such, quantity (7) will be negative and increasing X will make it more likely that

Condition 1 holds, thereby increasing the chances an inventor will pick a socially-suboptimal

project.

As another example, consider the class of normal distributions:

g (X;µ, h (µ)) =

 
1p

2⇡h (µ)

!
e
�
✓

(X�µ)2

2h(µ)

◆

=) d

dµ
g (X;µ, h (µ)) =

 
1p

2⇡h (µ)

!
⇤ e

�
✓

(X�µ)2

2h(µ)

◆

⇤
✓
(X � µ)

 1
2h

0 (µ) (X � µ) + h (µ)

h2 (µ)

�◆

+e
�
✓

(X�µ)2

2h(µ)

◆

⇤
 
� ⇡h0 (µ)

(2⇡h (µ))3/2

!

= e
�
✓

(X�µ)2

2h(µ)

◆ h
(2⇡h (µ))�1/2

i "
(X � µ)

✓
1

h (µ)

◆
+

h0 (µ)

2h (µ)

"
(X � µ)2

h (µ)
� 1

##
(8)

This implies that d
dµg (X;µ, h (µ)) < 0 if h (µ) > (X � µ)2 (i.e., the variance at a given µ

increases quickly enough) and X �µ < 0 (i.e., the expected return µ exceeds the status quo, X,

as is likely). In that case, quantity (8) will be negative. So once again, increasing X will make

it more likely that Condition 1 holds, thereby increasing the chances of a socially-suboptimal

choice by an inventor.
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5.2 Increase in Technology Threshold

We can now explore various policy interventions to align the inventor’s incentives with those of

the social planner. We begin with a straightforward intervention: an increase in the technology

threshold X.

In some settings, this threshold may depend solely on factors outside a policymaker’s

control. In the context of pharmaceuticals, however, the FDA may exert considerable control

over this level. In particular, drugs whose clinical safety and efficacy profile falls below X are

not approved and provide zero private returns. Still, while the FDA might be able to increase

X, the existing state of technology in a given field likely sets a floor for this value, because it

is unlikely that pharmaceutical companies could obtain significant returns on new drugs that

actually perform worse than ones that already exist.

Based on Proposition 5.3 and the discussion in the previous section, we can see it is possible

that increasing the technology threshold will increase the chances that an inventor pursues a

lower value innovation than the social planner would pursue. The underlying reason is clear:

increasing the technology threshold increases the risk that an inventor will obtain zero returns

for a given project. As such, even a risk-neutral inventor will pursue a less risky project in such

a scenario, if risk increases sharply enough with return. Accordingly, what might seem to be a

simple solution – increasing the regulatory technology threshold X to deter me-too products -

may paradoxically cause firms to take on less risk and pursue more me-too innovation.

A corollary of this result is that the problem of suboptimal innovation in a given field

might increase as the field advances over time. This is because X will continue to increase,

and inventors will become more prone to pursuing less risky, socially-suboptimal innovations to

reduce their chance of obtaining zero returns.

5.3 Rewards and Taxes

Next we derive the following results for a reward or prize system in which the inventor receives

a prize P > 0 if the social value of the invention exceeds some threshold k. The optimization
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problem now becomes:

max
µ,�2

E
⇥
m (X) |µ,�2, P

⇤

= max
µ,�2

Z

X
(mx+ b) dG

�
x;µ,�2

�
+ P

�
1�G

�
k;µ,�2

���

() max
µ,�2

Z

X

✓
x+

b

m

◆
dG
�
x;µ,�2

�
+

P

m

�
1�G

�
k;µ,�2

���

Assumption 2. (Diminishing return to risk) @2

@(�2)2
E
⇥
m (X) |µ,�2, P

⇤
 0

Assumption 2 is analogous to Assumption 1; it requires the return to taking more risks at

a given level of µ be decreasing with �2 even with the prize system. Similar to the discussion in

Section 4, the sufficient condition for the inventor to pick a suboptimal project now becomes:

Condition 2.

✓
X +

b

m

◆
G2 (X;µ, h (µ))h0 (µ) +

P

m
G2 (k;µ, h (µ)) �

�
✓
X +

b

m

◆
G1 (X;µ, h (µ))� P

m
G1 (k;µ, h (µ))

Remark 5.1. When k = X, any reward P > 0, is equivalent to an increase in b. Thus, such a

reward incentivizes the inventor to pick a lower mean project µP < µM .

More generally, a prize that is awarded for crossing too low of a threshold could be coun-

terproductive: it might encourage that inventor to actually produce a lower-value invention.

Is there a situation under which the reward system helps mitigate the problem? Since

� P
mG1 (k;µ, h (µ)) > 0, Condition 2 will be less likely to be satisfied if G2 (k;µ, h (µ)) < 0.

Proposition 5.4. Suppose the inventor, whose status quo choice is µM , receives a prize P > 0

if the social value of the invention exceeds some threshold k. If his expected return exhibits

diminishing return to risk (Assumption 2) and Condition 2 holds, then the inventor’s choice µP

is suboptimal. Furthermore, if G2 (k;µ, h (µ)) < 0, he will select a project with µP > µM .

Proof. Follows from the discussion above.
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We can see what is the minimal level at which a prize will improve inventor incentives for

the class of normal distributions. In that case:

G (k;µ, h (µ)) =
1

2

"
1 + erf

 
k � µp
2h (µ)

!#

=) G2 (k;µ, h (µ)) =
1

2

2p
⇡
e
�
✓

k�µp
2h(µ)

◆2

k � µp
2

�1

2
h (µ)�

3
2

= � 1

2
p
2⇡

e
�
✓

k�µp
2h(µ)

◆2

k � µp
2

h (µ)�
3
2

Therefore, G2 (k;µ, h (µ)) < 0 if k > µ. Again, the intuition here is straightforward: if a

prize or reward is provided for inventions whose social value exceeds a sufficiently high threshold

(i.e., k � µ), then the inventor will select an investment project with higher unconditional

expected social returns than in the absence of a prize.

Given that low-end rewards are problematic, a lump-sum tax might reduce the gap between

the inventor and the social planner. In fact, we can easily derive the following result:

Corollary 5.1. If Condition 1 and Assumption 1 hold, an inventor-specific lump sum tax

of ⌧ = b placed on all innovation that exceeds the technology threshold X will help align the

inventor’s incentives with those of the social planner.

Proof. Such a tax is identical to a corresponding reduction in b. Note that this disproportionately

affects lower-value inventions that exceed the technology threshold X.

Corollary 5.2. If Condition 1 and Assumption 1 hold, a subsidy s = X for innovations lower

than the technology threshold X and s = (1�m)X for innovations higher than X together

with a inventor-specific lump sum tax will fully align the inventor’s incentives with those of the

planner.

Proof. The combination of the subsidy and the tax will align the inventor’s return function with

that of the social planner.

The subsidy below X acts as insurance for projects that fall below the technology threshold,

thereby encouraging the inventor to take on more risk. The subsidy above X acts like a value-
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based patent system, discussed in more detail below. In particular, since m  1, this operates

as a subsidy that disparately benefits higher-value inventions.8

5.4 Value-Based Patent Protection

Finally, what about changes to the patent system? Patents give inventors a legal monopoly over

their inventions, enabling them to exclude others from making, using, selling, offering to sell,

or importing their inventions into a country for a limited period of time. Whether this legal

monopoly translates into an economic monopoly depends on market demand. All else being

equal, we would expect a patent on a product that generates more social value to generate

higher profits. That relationship is captured by the profit function in our model, with m > 0.

Ideally, we want a system where the increased benefit to the inventor is proportional to

the social value of the invention. This sort of value-based patent system would boost profits

for inventions with higher social value as compared to those that have lower social value. As a

practical matter, this might be implemented by adjusting patent duration based on the social

value of the underlying invention. In terms of our model, we can think about the effect of

increased patent protection as an strict increase in the slope parameter m.

Proposition 5.5. Suppose the inventor receives an increase in patent protection proportional

to the invention’s underlying social value, which is equivalent to an increase from m to m0 > m.

Under Assumption 1, the inventor will pick µ0
M > µM .

Proof. This follows directly from Proposition 5.1.

Note that, if in addition to increasing m, we decrease patent protection for low-value

inventions, that would be equivalent to lowering b. From Proposition 5.2 above, we can see this

would also increase an inventor’s choice of µ.

Instead of a value-based patent system, why not more just increase patent protection

uniformly across the board, regardless of the social value of the invention? Such a increase would

provide a boost to all products that generate positive profits for a firm (i.e., where X > X). In

8
By contrast, one can see that a proportional tax – one that takes a fixed percentage of pharmaceutical profits

– might exacerbate firms’ tendency to pick low-value inventions. This follows directly from Proposition 5.1, since

a proportional tax in effect reduces the slope m of the inventor’s profit function.
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our model, this would be roughly modeled as an increase in the intercept parameter, b. But as

we have seen, such a boost would actually increase the gap between the inventor’s and social

planner’s incentives. To the extent we want to minimize deviations from the status quo, such

a policy would be suboptimal, because we would need to increase the slope parameter m even

more to counteract the effect of raising b at the same time.

5.5 Policy under Incomplete Information

Throughout this paper, we have assumed the policymaker has the same complete information

as the representative firm. But if the firm has private unobservable information in its invest-

ment choice set, then the policymaker may have a biased estimate of model parameters, which

could lead to wasteful policy interventions such as unnecessary or excessive rewards to induce

innovation.

To illustrate, consider a reward intervention in the monopoly discrete choice model as

discussed in Section 3.1 above. Let the social cost of raising money for the reward be a continuous

function S(r), where S0(r) � 0. This social cost may be, for example, the deadweight loss caused

by taxation used to raise revenues to pay the reward. Assume as before pHX̄H�pLX̄L > 0. The

social planner does not know pH but has an estimate p̂H . It knows the other model parameters

X̄H , pL, X̄L, X, b.

Proposition 5.6. The only situation in which a reward system might be worse than the status

quo is if the social planner underestimates pH .

Proof. In Appendix.

In the worst-case situation, the firm is already picking the higher-value project, and the

planner incorrectly perceives the firm as picking the lower-value project. Accordingly, the plan-

ner would offer a windfall, or a reward that was unnecessary to induce the higher-value choice.

For other model parameters, X̄H , pL, X̄L, b,9 similar logic applies. In particular, a reward

system might be worse than the status quo only if the social planner underestimates X̄H or

9
We assume X always yields zero payoffs; this can be viewed as a normalization and hence any mismeasurement

of X is captured by mismeasurement of X̄H and X̄L.
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overestimates pL, X̄L, or b. In these scenarios, the firm would receive a windfall, since it would

have chosen the high-value project even if no reward had been provided.

The potential for mismeasurement identified here is unlikely to lead to outcomes worse

than the status quo. If anything, we might worry about overly optimistic social planners who

overestimate pH and/or X̄ (i.e., they believe the chances of success or the value of the high-

value project are greater than they actually are) or underestimate pL and/or X̄L (i.e., they

believe the chances of success and value of the lower-value project are less than they actually

are). These measurement errors would, at worst, lead to the status quo. While overestimates

of b might cause policymakers to provide windfall payments to firms, this parameter is actually

quite measurable – for example, as discussed in the context of metastatic colorectal cancer

drugs, we can estimate b by measuring price markups for new drugs that marginally improve

over inexpensive treatments like chemotherapy. As such, mismeasurement probably should not

be a significant concern for policymakers and should not deter them from implementing the

policy interventions proposed here.

6 Conclusion

Our paper models how risk and return influence the investments that technology companies

make when investing in new products. In particular, we show if firms obtain a fixed private

benefit from producing new technologies that marginally exceed the state of the art, firms will

invest in less risky, socially-suboptimal R&D projects. We further show that competition and

new entrants mitigate but do not eliminate the distortion created by the fixed private benefit.

For pharmaceuticals and biotechnology firms, our model formalizes a motivation for these firms

to “reach for mediocrity” and pursue me-too innovations – less risky projects that add little

social benefit over the status quo.

We also explore various policy interventions that could be used to reduce the gap in in-

centives between inventors and the social planner. We show that an increase in the technology

threshold is ambiguous in this regard, though it may exacerbate the problem we identify here

for common classes of return distributions. By contrast, rewards for high-value inventions and

lump-sum taxes that disparately affect low-value inventions will reduce the potential problem.
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In addition, we show that a value-based patent system, with increasing patent rents provided

to inventors based on the underlying social value of the invention, could induce inventors to

pursue optimal risk/return tradeoffs and innovations that are maximally socially beneficial. We

explain why such a system would be more effective than across the board increases in patent

protection.

Since the wedge between private and social incentives appears to be especially large in

the context of pharmaceuticals, this would be an obvious place where a value-based patent

system could be useful. How might this system be implemented in practice? As we discuss

in our related work (Sukhatme and Bloche [2018]), there are a number of existing metrics of

clinical safety and efficacy that enable us to measure drug value. For instance, quality-added

life years are an increasingly commonly-used metric that measures average increases in lifespan

provided by drugs, discounted by their effect on patients’ quality of life. And in the context of

cancer medication, the American Society of Clinical Oncology has recently suggested value-based

metrics for patients and doctors to consider when choosing therapies (Schnipper et al. [2015]).

Such metrics could be adapted to form the basis of a value-based drug patent system. This

approach would enable significant innovations to receive greater rewards than me-too products,

thereby channeling private resources toward more socially-beneficial outcomes.
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Appendix

A Proof of Proposition 5.6

Proof. It is socially optimal to offer a reward r only within the range 0 < rmin < r  rmax,

where these values are:

rmin = max


pL
pH

�
X̄L + b

�
�
�
X̄H + b

�
, 0

�

rmax = S�1

✓
X̄H � pL

pH
X̄L

◆

If rmin > rmax, then the benefit from inducing the higher-value project is less than the

social cost of generating the reward. If rmin  rmax, then the socially-optimal reward is rmin.

Note that if pL

pH

�
X̄L + b

�
�
�
X̄H + b

�
< 0, the reward is 0 because the firm is already picking

the higher-value project.

Now suppose the planner observes pH with error, such that p̂H < pH . Then the planner’s

perceived (r̂min, r̂max) will be:

r̂min = max


pL
p̂H

�
X̄L + b

�
�
�
X̄H + b

�
, 0

�
� rmin

r̂max = S�1

✓
X̄H � pL

p̂H
X̄L

◆
< rmax

Note that if rmin > rmax then r̂min > r̂max. So the planner will correctly eschew providing

a reward if the social costs of the reward exceed the benefits. If r̂min > r̂max but rmin  rmax,

then the planner will not provide a reward even though doing so would be socially optimal, and

the status quo will remain.

Now examine two cases – first, assume the firm picks the lower-value project, so we know

pL
�
X̄L + b

�
> pH

�
X̄H + b

�
and so rmin > 0. The social planner will correctly infer the firm

is picking the lower-value project, since r̂min � rmin > 0. The planner will offer to pay more
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than the optimal reward rmin, but would not do worse than the status quo, where no reward is

provided.

Next, let pL
�
X̄L + b

�
< pH

�
X̄H + b

�
and so rmin = 0; accordingly, the firm is already

picking the higher-value project. If pL
�
X̄L + b

�
< p̂H

�
X̄H + b

�
, then the planner will still

correctly infer the firm’s choice and will not offer a reward. If p̂H is low enough such that

pL
�
X̄L + b

�
> p̂H

�
X̄H + b

�
, the planner will incorrectly believe the firm is picking the lower-

value project and will offer r̂min as a reward, so long as r̂min  r̂max. This will generate an

unnecessary social cost S (r̂min).

Now suppose instead p̂H > pH . Then the perceived (r̂min, r̂max) will be:

r̂min = max


pL
p̂H

�
X̄L + b

�
�
�
X̄H + b

�
, 0

�
 rmin

r̂max = S�1

✓
X̄H � pL

p̂H
X̄L

◆
> rmax

First, assume pL
�
X̄L + b

�
> pH

�
X̄H + b

�
, so the firm chooses the lower-value project. If

pL
�
X̄L + b

�
< p̂H

�
X̄H + b

�
, then the planner will mistakenly believe the firm is already picking

the higher-value project and will keep the status quo. If pL
�
X̄L + b

�
> p̂H

�
X̄H + b

�
, then

the planner will offer to pay the reward r̂min, so long as r̂min > 0 and r̂min  r̂max. But since

r̂min < rmin, the reward would be insufficient to induce the firm to pick the higher-value project,

and the status quo will remain.

Now instead suppose pL
�
X̄L + b

�
< pH

�
X̄H + b

�
or rmin = 0, so the firm is already

picking the higher-value project. Since r̂min  rmin = 0, it must be that r̂min = 0. The planner

will correctly infer the firm’s choice and will not offer a reward.
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