17 research outputs found

    Numerical simulation of all-normal dispersion visible to near-infrared supercontinuum generation in photonic crystal fibers with core filled chloroform

    Get PDF
    This study proposes a photonic crystal fiber made of fused silica glass, with the core infiltrated with chloroform as a new source of supercontinuum (SC) spectrum. We numerically study the guiding properties of the fiber structure in terms of characteristic dispersion and mode area of the fundamental mode. Based on the results, we optimized the structural geometries of the CHCl3-core photonic crystal fiber to support the broadband SC generations. The fiber structure with a lattice constant of 1 μm, a filling factor of 0.8, and the diameter of the first-ring air holes equaling 0.5 μm operates in all-normal dispersion. The SC with a broadened spectral bandwidth of 0.64 to 1.80 μm is formed by using a pump pulse with a wavelength of 850 nm, 120 fs duration, and power of 0.833 kW. That fiber would be a good candidate for all-fiber SC sources as cost-effective alternative to glass core fibers

    Security–reliability analysis of AF full-duplex relay networks using self-energy recycling and deep neural networks

    Get PDF
    This paper investigates the security-reliability of simultaneous wireless information and power transfer (SWIPT)-assisted amplify-and-forward (AF) full-duplex (FD) relay networks. In practice, an AF-FD relay harvests energy from the source (S) using the power-splitting (PS) protocol. We propose an analysis of the related reliability and security by deriving closed-form formulas for outage probability (OP) and intercept probability (IP). The next contribution of this research is an asymptotic analysis of OP and IP, which was generated to obtain more insight into important system parameters. We validate the analytical formulas and analyze the impact on the key system parameters using Monte Carlo simulations. Finally, we propose a deep learning network (DNN) with minimal computation complexity and great accuracy for OP and IP predictions. The effects of the system’s primary parameters on OP and IP are examined and described, along with the numerical data.Web of Science2317art. no. 761

    Clinical and Virological Features of Dengue in Vietnamese Infants

    Get PDF
    Dengue is a major public health problem in tropical and subtropical countries, including Vietnam. Dengue cases occur in children and young adults; however, severe dengue also occurs in infants less than 1 year of age. Prompt recognition of dengue is important for appropriate case management, particularly in infants in whom febrile illness from other causes is common. We describe the clinical picture, virological and immunological characteristics of infants with dengue admitted to three hospitals in southern Vietnam, compared with infants admitted with fever not due to dengue. We show that infants with dengue are difficult to distinguish from those with other febrile illnesses based on signs and symptoms at presentation, and so laboratory tests to confirm dengue virus infection may be useful for diagnosis and management. Conventional diagnostic methods for dengue have low sensitivity early in infection, and we show that an alternative antigen-detection assay that has demonstrated good sensitivity and specificity in older age groups also performs well in infants. This study will help to inform the diagnosis and management of dengue in infants

    A Multi-Center Randomised Controlled Trial of Gatifloxacin versus Azithromycin for the Treatment of Uncomplicated Typhoid Fever in Children and Adults in Vietnam

    Get PDF
    BACKGROUND: Drug resistant typhoid fever is a major clinical problem globally. Many of the first line antibiotics, including the older generation fluoroquinolones, ciprofloxacin and ofloxacin, are failing. OBJECTIVES: We performed a randomised controlled trial to compare the efficacy and safety of gatifloxacin (10 mg/kg/day) versus azithromycin (20 mg/kg/day) as a once daily oral dose for 7 days for the treatment of uncomplicated typhoid fever in children and adults in Vietnam. METHODS: An open-label multi-centre randomised trial with pre-specified per protocol analysis and intention to treat analysis was conducted. The primary outcome was fever clearance time, the secondary outcome was overall treatment failure (clinical or microbiological failure, development of typhoid fever-related complications, relapse or faecal carriage of S. typhi). PRINCIPAL FINDINGS: We enrolled 358 children and adults with suspected typhoid fever. There was no death in the study. 287 patients had blood culture confirmed typhoid fever, 145 patients received gatifloxacin and 142 patients received azithromycin. The median FCT was 106 hours in both treatment arms (95% Confidence Interval [CI]; 94-118 hours for gatifloxacin versus 88-112 hours for azithromycin), (logrank test p = 0.984, HR [95% CI] = 1.0 [0.80-1.26]). Overall treatment failure occurred in 13/145 (9%) patients in the gatifloxacin group and 13/140 (9.3%) patients in the azithromycin group, (logrank test p = 0.854, HR [95% CI] = 0.93 [0.43-2.0]). 96% (254/263) of the Salmonella enterica serovar Typhi isolates were resistant to nalidixic acid and 58% (153/263) were multidrug resistant. CONCLUSIONS: Both antibiotics showed an excellent efficacy and safety profile. Both gatifloxacin and azithromycin can be recommended for the treatment of typhoid fever particularly in regions with high rates of multidrug and nalidixic acid resistance. The cost of a 7-day treatment course of gatifloxacin is approximately one third of the cost of azithromycin in Vietnam. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN67946944

    Hybrid robot hand for stably manipulating one group objects

    No full text
    Autonomous manipulation of group objects requires the gripper/robot hand to achieve high productivity without poor outcomes such as object slippage and damage. This article develops the robot hand capable of achieving effective performance in each trial of grasping the group objects. Our proposed robot hand consists of two symmetrical groups of hybrid fingers having soft pads on the grasping interfaces, which operate as a comb. The grasping ability of this robot hand was theoretically and experimentally validated by handling three groups of objects showcases: tea packs, toothbrushes, and mixing sticks. Additionally, validation results were compared with those of another soft robot hand having soft Pneunet fingers. In each trial, the experimental results showed that the proposed robot hand with hybrid fingers achieved more stable grasping states characterized by a higher number of grasped objects than those in the case of the soft robot hand. Also, experimental results were in good agreement with the predictions of the proposed theoretical analysis. Finally, better performances of the hybrid robot hand in handling the group object provide the bases for developing a novel-robotic application in industrial production

    Enhancement of ECE SuperPin Curved Reflex Reflector by the Use of Double Pins with Corner Cubes

    No full text
    A new, highly efficient curved reflex reflector is proposed to meet the requirement of EU ECE (Economic Commission for Europe) regulations based on the commercial design provided by an automotive company which has been in mass production. We used double pins with corner cubes which served as the building element of a SuperPin curved retro-reflector to enhance reflectivity performance. Our experiment outcomes indicated 46% higher retro-reflection efficiency and 33% larger working areas compared with the commercial design

    ECE/SAE Dual Functional SuperPin Plus Curved Reflex Reflector by Use of New Structured Corner Cubes

    No full text
    We propose and demonstrate, using optical experiments, a new reflex reflector structure called SuperPin Plus. The structure is composed of special pin groups with dihedral-angle offsets in corner cubes. One of the specular features brought by this new design is that it can comply with both the US SAE (US Society of Automotive Engineers) standard and the EU ECE (Economic Commission for Europe) standard, so that manufacturing costs of reflex reflector for both European and American automobile markets can be reduced. By using genetic algorithms for optimization, the angles and the positions of the pins, which are the building elements of corner cube reflectors, serve as the parameters to tune up the performance of the SuperPin Plus curved reflex reflector. Compared with conventional ECE flat regular retro-reflectors, we found that not only can we achieve a 41% higher retro-reflection efficiency with the ECE SuperPin Plus flat reflex reflector, but that SuperPin Plus can also act as a reflex reflector within SAE standards. In addition, we demonstrate that the retro-reflection efficiency is 30.5% higher (SAE standard) and 42.7% higher (ECE standard), and that a 32% increase in working area can be achieved if double pin groups are used to construct the corner cubes instead of a single pin arrangement, in a curved SuperPin Plus reflex reflector

    Design of Counter Beam Tunnel Lights for CIE 88 : 2004 Regulation in Threshold Zone

    No full text
    To enhance driving safety, a counter beam light is proposed to meet CIE (International Commission on Illumination) specifications for tunnel lighting. The proposed new counter beam light (CBL) acts as a qualified counter beam light to help tunnel road lighting meet the CIE 88 : 2004 regulation standard in the threshold zone in both simulation and in practice. Through appropriate arrangements of the counter beam light and conventional fluorescent lights on the tunnel ceiling, we demonstrate that road tunnel lighting meeting CIE 88 : 2004 standards can be accomplished. Based on LiteStar four-dimensional simulation, the source file created through the measurement of the proposed CBL prototype achieved an average road surface brightness of 121 cd/m2, which is greater than the minimum regulation level of 105 cd/m2, a brightness uniformity of 0.88 (minimum regulation level of 0.4), longitudinal brightness uniformity of 0.98 (minimum regulation level of 0.6), a glare factor of 4.41% (maximum level of 15%), and a contrast revealing coefficient of 1.08, which is above the 0.6 minimum level in the threshold zone

    Adaptive Network Based Fuzzy Inference System with Meta-Heuristic Optimizations for International Roughness Index Prediction

    No full text
    The International Roughness Index (IRI) is the one of the most important roughness indexes to quantify road surface roughness. In this paper, we propose a new hybrid approach between adaptive network based fuzzy inference system (ANFIS) and various meta-heuristic optimizations such as the genetic algorithm (GA), particle swarm optimization (PSO), and the firefly algorithm (FA) to develop several hybrid models namely GA based ANGIS (GANFIS), PSO based ANFIS (PSOANFIS), FA based ANFIS (FAANFIS), respectively, for the prediction of the IRI. A benchmark model named artificial neural networks (ANN) was also used to compare with those hybrid models. To do this, a total of 2811 samples in the case study of the north of Vietnam (Northwest region, Northeast region, and the Red River Delta Area) within the scope of management of the DRM-I Department were used to validate the models in terms of various criteria like coefficient of determination (R) and the root mean square error (RMSE). Experimental results affirmed the potentiality and effectiveness of the proposed prediction models whereas the PSOANFIS (RMSE = 0.145 and R = 0.888) is better than the other models named GANFIS (RMSE = 0.155 and R = 0.872), FAANFIS (RMSE = 0.170 and R = 0.849), and ANN (RMSE = 0.186 and R = 0.804). The results of this study are helpful for accurate prediction of the IRI for evaluation of quality of road surface roughness

    Low-Glare Freeform-Surfaced Street Light Luminaire Optimization to Meet Enhanced Road Lighting Standards

    No full text
    To enhance driving safety at night, a new freeform-surface street light luminaire was proposed and evaluated in this study that meets the requirements of the International Commission on Illumination (CIE) M3 class standard for road lighting. The luminaire was designed using simulations to optimize the location of the bulb according to the requirements of the standard. The light source IES file was experimentally obtained for the optimized luminaire prototype with a 150 W ceramic metal halide lamp using an imaging goniophotometer. The trial road lighting simulation results computed by the lighting software DIALux indicated that the proposed luminaire provided an average road surface brightness of 1.1 cd/m2 (compared to a minimum requirement of 1.0 cd/m2), a brightness uniformity of 0.41 (compared to a minimum requirement of 0.4), a longitudinal brightness uniformity of 0.64 (compared to a minimum requirement of 0.6), and a glare factor of 7.6% (compared to a maximum limit of 15%). The findings of the image goniophotometer tests were then confirmed by the results of a certified mirror goniophotometer test conducted by the Taiwan Accreditation Foundation (TAF). The results of this study can be used to provide improved street lighting designs to meet enhanced international standards
    corecore