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Abstract: This paper investigates the security–reliability of simultaneous wireless information and
power transfer (SWIPT)-assisted amplify-and-forward (AF) full-duplex (FD) relay networks. In
practice, an AF-FD relay harvests energy from the source (S) using the power-splitting (PS) protocol.
We propose an analysis of the related reliability and security by deriving closed-form formulas for
outage probability (OP) and intercept probability (IP). The next contribution of this research is an
asymptotic analysis of OP and IP, which was generated to obtain more insight into important system
parameters. We validate the analytical formulas and analyze the impact on the key system parameters
using Monte Carlo simulations. Finally, we propose a deep learning network (DNN) with minimal
computation complexity and great accuracy for OP and IP predictions. The effects of the system’s
primary parameters on OP and IP are examined and described, along with the numerical data.

Keywords: physical layer security (PLS); self-energy recycling; full duplex (FD); outage probability
(OP); intercept probability (IP); deep learning network (DNN)

1. Introduction

The Internet of Things (IoT) is the term employed to describe the interconnection of
all physical items with the Internet through information sensing devices for the purpose
of information exchange, i.e., the way in which physical objects communicate with one
another to accomplish intelligent identification and administration. The future beyond
5G (B5G) IoT and massive machine-type communication (mMTC) will face difficult issues
due to massively networked smart gadgets [1]. This is mostly due to the varied quality of
service (QoS) provided by the enormous number of such devices for 5G-enabled big IoT
networks. As a result of the huge IoT, wireless communication networks will face a variety
of issues, including fundamental energy consumption, the use of high-frequency resources,
and more [2].

Many approaches have been suggested to boost spectral efficiency (SE) performance.
Full-duplex (FD) relaying techniques can, among others, roughly quadruple the SE
compared to half-duplex (HD) relaying [3–7]. Additionally, the authors in [8] used
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orthogonal frequency division multiple access (OFDMA) technology to expand FD
relaying into a multi-user scenario. Recent developments in antenna and transceiver
design in FD have demonstrated a high potential for eliminating the self-interference
(SI) channel up to the receiver noise floor [9]. By utilizing the physical isolation and
separation of the transmitter and receiver, the SI channel can lessen passive cancelation.
The SI signal in the received transmission is actively suppressed [10]. The FD relay
broadcasts information, and the broadcast characteristics of the wireless medium offer a
tremendous problem in guaranteeing secure and reliable communications in the face
of adversaries [11,12]. As a result, secure transmission becomes a critical problem that
cannot be overlooked. Several transmission techniques for enhancing the secrecy rate
were presented [13–16] to prevent secret communications from being eavesdropped
in FD relay networks. In [17], the authors investigated a communication network in
which a source seeks to interact with an FD destination while being overheard by an
eavesdropper. The author in [18] studied the secrecy outage probability (SOP) of the
multiple FD decode and forward (DF) relay networks under imperfect channel state
information (CSI). In this case, relay selection was applied, which proved to be better
than the HD-based strategy. An overview of physical layer security (PLS) schemes
for FD co-operative systems was presented in [19]. Furthermore, in a situation with
untrusted relays, a source-based jamming strategy was presented, in which the source
sends a composite signal comprising the secret and jamming signals to increase secrecy.
The authors in [20] examined the scenarios involving different relays and the effects of
antenna designs and jamming signals on security. In [21], the authors presented the SOP
of an FD jamming relay method, where the source sends data to the relay while sending
the jamming signals to the eavesdroppers. Furthermore, the authors in [22] studied a
two-hop FD-DF relaying scheme with secrecy rates and optimal power allocation. Finally,
Moya. et al. proposed a co-operative network where the FD destination transmits the
jamming signal to several amplify-and-forward (AF) untrusted relays in [23].

Energy harvesting (EH) is a workable solution to the problem of limited operation
time [24–29]. EH can extend the life of the IoT network or even make it self-sufficient by
harvesting energy from the environment, such as vibration, solar, and wind [30]. Since it
can harvest energy from radio frequency (RF) signals, providing a more reliable energy
supply, wireless power transfer (WPT) offers a more realistic solution to the limited period
of operation problem [31–33]. Researchers have further incorporated the WPT properties
into wireless communication systems, known as simultaneous wireless information and
power transfer (SWIPT), by taking into account the fact that RF signals may transport both
information and energy [34–36]. For instance, Chen et al., in [37], investigated limited
feedback multi-antenna systems, wherein the trade-off between wireless energy and infor-
mation transfer was considered. In addition, the authors maximized energy harvesting by
using adaptive energy beamforming according to instantaneous CSI. The two protocols
for EH, which are time switching (TS) and power splitting (PS), were explored in [38,39],
respectively. A part of the time or power of the received signal is utilized for energy
harvesting in TS or PS protocols, whereas the remainder is used for information processing.
The PLS in the SWIPT network has attracted a lot of researchers, as in [40–42]. The secrecy
performance of a single-input multiple-output (SIMO) SWIPT system was explored in [40],
in which the base station broadcasts information to the receiver while simultaneously
transferring energy to numerous energy-harvesting receivers. The authors in [41] presented
a strong, secure transmission system for multiple-input single-output (MISO) SWIPT net-
works. In [42], the authors offered an effective transmission solution for multiple-input
multiple-output (MIMO) wiretap channels, in which the non-concave issue was first turned
into a convex optimization and then solved by dealing with its dual problem.

Deep learning has recently evolved as a strong data-driven strategy to solve a variety of
complex issues, such as image processing, pattern recognition, and wireless communication
applications [43]. The authors in [44] designed a deep neural network (DNN) model to
forecast coverage probability in random wireless networks. It should be highlighted that
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the DNN model outperforms the mathematical method, which is only appropriate for
oversimplified network settings. Moreover, in [45], the authors employed a DNN model
to predict the SOP and demonstrate the shortest running time for SOP prediction across
simulation and analytical findings in unmanned aerial vehicle networks. Zheng et al.,
in [46], studied the combination of adjusted, deep deterministic policy gradient (A-DDPG)
and convex optimization to optimize the long-term secondary throughput in RF-powered
ambient backscatter-assisted hybrid underlay cognitive radio networks.

1.1. Related Work and Motivation

A lot of the current literature has studied the PLS in co-operative relaying networks.
In [47], the authors studied the problem of security in untrusted FD relaying using the
AF protocol system by applying a source-jamming scheme. However, the author did not
consider EH to help improve the lifetime of the device. The authors in [48] investigated
security performance in an AF relaying FD system in the presence of a passive eavesdropper.
In [49], the authors investigated reliability and security in an AF relaying system in the
presence of an eavesdropper. Furthermore, the authors considered friendly jammers to
improve the security of the system. However, the authors in [48,49] did not consider FD in
co-operative relaying to improve the SE of the system. In addition, the authors of [47–49]
did not apply a DNN in order to reduce the overall energy consumption through an offline
training process. In addition, Table 1 shows a comparison of our work with related works.

Motivated by the challenges described above, we consider the security–reliability
of a SWIPT-assisted FD relay in IoT networks. The FD relay harvests energy based on
the PS protocol. In particular, the FD relay is also assumed to have the ability for self-
energy recycling to increase the average transmittance power. In addition to harvesting the
energy from the source’s broadcast signal, the self-interference energy can be recovered
and reused [50]. In addition, we apply the DNN method to predict the security–reliability
of the proposed system.

Table 1. Comparison of our work with the related work.

Our
Work [47] [48] [49] [50] [51]

Co-operative AF relaying network
√ √ √ √ √ √

FD
√ √

EH
√ √ √

PLS
√ √ √ √ √

DNN
√

1.2. Contributions

The main contributions of this paper are listed as follows:

• We propose a novel SWIPT-assisted AF-FD relay network to evaluate security and
reliability trade-offs. In particular, in order to increase EH, the relay can harvest energy
from the source and reuse the self-interference channel based on the PS protocol to
attain battery-free operation;

• We derive the approximate OP for legitimate communications and the approximate IP
for the eavesdropper’s channel. The asymptotic expressions for the OP and IP are also
examined to give some insight into the system configuration under consideration. In
order to verify the derived expressions, Monte-Carlo simulation is adopted;

• The suggested DNN performs almost as well as the simulation while drastically
lowering the computing complexity. In comparison to existing machine learning-
based regression models for OP/IP prediction, our suggested DNN technique has the
lowest root mean square error (RMSE) and takes the shortest time to execute. When
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system attributes and channel circumstances vary, the data rate of the considered
system can be customized based on the estimated OP/IP.

1.3. Organization

Section 2 describes the system model. Section 3 expresses the performance analysis.
Section 4 shows the asymptotic analysis. Section 5 proposes the DNN network. Section 6
presents numerical results. Finally, a conclusion for the obtained results is presented
in Section 7.

2. System Model

The proposed system model for wireless communication, in which one source node, S,
communicates with one destination node, D, via the help of one FD relay node, R, in the
presence of an eavesdropper node, E, that wants to take the information from both R and S
is shown in Figure 1. In order to enhance the performance at D, we assumed that S could
transmit its signal directly to D and via the relay R. Because of the limited energy, R will
need to harvest wireless energy from S and employ the self-energy recycling technique, as
seen in [50], and then adopt the total harvested energy to transmit the source data to D
using the AF mode. In the AF mode, R amplifies and then forwards the received signal
from S to D. Moreover, Table 2 shows the main parameters of our paper.

Source

Device

Eavesdropper

FD Relay

Information link

Wiretap link

Energy harvesting link

Figure 1. System model.

2.1. Energy Harvesting Model

In the energy harvesting phase, in order to implement self-energy recycling (S-ER),
the total harvested energy at R can be expressed as [50]

ER = ηρT(PSγSR + PRγRR). (1)

Then, the transmit power of R can be formulated as

PR = ER
T = ηρPSγSR

1−ηργRR
. (2)

It is worth noting from (2) that PR = 0 when γRR ≥ 1
ηρ . In practice, γRR is much less

than 1 due to passive interference cancellation (IC), such as from antenna isolation, so the
denominator in (2) is positive [52].
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2.2. Fading Channel Model

Let us denote hSD, hSR, hSE, hRD, and hRE as the channel coefficients of the direct
link from source node S to destination node D, and S → R, S → E, R → D, R → E links,
respectively. We also denote hRR as the self-interference coefficient between the transmit and
receive antennas of relay node R. Assume that hX (X ∈ {SD, SR, SE, RD, RE}) are Rayleigh
fading channels; channel gains γX = |hX|2 are exponential random variables (RVs) for
which the cumulative distribution function (CDF) is given as

FγX(x) = 1− exp(−λXx). (3)

Table 2. Main Parameters.

Notation Definition

PS The transmit power at S
PR The transmit power at R
xS The transmit signal at S with E{x2

S} = PS
xR The transmit signal at R with E{x2

R} = PR
η The conversion efficiency with 0 < η 6 1
ρ The PS ratio with 0 < ρ < 1
Rth The target rate
nR, n1

D, n2
D, n1

E, n2
E The AWGN with variance N0

ω The path loss exponent
dSD The distance from S to D
dSR The distance from S to R
dSE The distance from S to E
dRD The distance from R to D
dRE The distance from R to E
E{•} The expectation operator
Kν(•) The modified Bessel function of the second kind with ν-th order:

To take into account the simple path loss model, the parameters can be formulated
as follows:

λX = (dX)
ω. (4)

The RV hRR is also modeled as complex Gaussian RV, and hence γRR = |hRR|2 is also
an exponential RV. Then, its CDF is given by

FγRR(x) = 1− exp(−λRRx). (5)

Then, the probability density function (PDF) of γY is given by

fγY(x) = ξ exp(−ξx), (6)

where ξ ∈ {λSR, λSD, λRD, λSE, λRE, λRR}.

2.3. Transmission Model

In the information transmission phase, the received signal at R is given as follows:

yR =
√

1− ρhSRxS +
√

1− ρhRRxR + nR. (7)

Moreover, in this phase, the received signal at D and E are respectively given by:

y1
D = hRDxR + n1

D, (8)

y1
E = hRExR + n1

E. (9)
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In our proposed system, the AF protocol is applied. Hence, after receiving the infor-
mation from S, R will amplify this information to D and E by the given amplification factor
β, as follows:

β = xR
yR

=

√
E{|xR|2}
E{|yR|2}

=
√

PR
(1−ρ)γSRPS+(1−ρ)γRRPR+N0

. (10)

By combining (7), (8), (9), and (10), we obtain the received signal at D and E as follows:

y1
D = hRDβ

[√
1− ρhSRxS +

√
1− ρhRRxR + nR

]
+ n1

D

= hRDβ
√

1− ρhSRxS︸ ︷︷ ︸
signal

+ hRDβ
√

1− ρhRRxR︸ ︷︷ ︸
inter f erence

+ hRDβnR + n1
D︸ ︷︷ ︸

noise

, (11)

and
y1

E = hREβ
√

1− ρhSRxS︸ ︷︷ ︸
signal

+ hREβ
√

1− ρhRRxR︸ ︷︷ ︸
inter f erence

+ hREβnR + n1
E︸ ︷︷ ︸

noise

.
(12)

The received signal-to-interference plus noise ratio (SINR) at D and E in this phase
can be, thus, calculated using the following expressions:

γ1
D =

E{|signal|2}
E{|noise|2} = γSRγRDβ2(1−ρ)PS

γRRγRDβ2(1−ρ)PR+γRDβ2 N0+N0
, (13)

and
γ1

E =
E{|signal|2}
E{|noise|2} = γSRγREβ2(1−ρ)PS

γRRγREβ2(1−ρ)PR+γREβ2 N0+N0
. (14)

By substituting (2) into (13) and (14) and then carrying out some algebra, the SINR at
D and E can be rewritten as

γ1
D =

γSRγRDηρ(1− ηργRR)Ψ
γSRγRDη2ρ2ΨγRR − ηργRR + 1

, (15)

γ1
E =

γSRγREηρ(1− ηργRR)Ψ
γSRγREη2ρ2ΨγRR − ηργRR + 1

, (16)

where Ψ = PS
N0

denotes the average transmited signal-to-noise ratio (SNR).
In our proposed model, the direct link is considered. Hence, in the broadcast phase,

D can be received, and the direct signal from S and E can overhear this signal when S
broadcasts to R and D. As a result, the received signal at D and E can be thus expressed by

y2
D = hSDxS + n2

D, (17)

y2
E = hSExS + n2

E. (18)

The SNR at D and E in this phase can be computed respectively by

γ2
D = ΨγSD, (19)

γ2
E = ΨγSE. (20)

Finally, by adopting the selection-combining (SC) technique at the receiver, the end-to-
end SNR at D and E can be respectively claimed as
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γD = max
(

γ1
D, γ2

D

)
, (21)

γE = max
(

γ1
E, γ2

E

)
. (22)

3. Performance Analysis

In this section, the performance of the proposed system is studied. In particular,
the closed-form outage probability (OP) and intercept probability (IP) are derived.

3.1. Outage Probability Analysis

The OP of the system can be expressed by

OP = Pr(γD 6 γth), (23)

where γth = 2Rth − 1 is the threshold, and Rth is the target rate. From (21) and (23), the OP
can be rewritten as

OP = Pr
(

max
(

γ1
D, γ2

D

)
6 γth

)
= Pr

(
max

(
γSRγRDηρ(1− ηργRR)Ψ

γSRγRDη2ρ2ΨγRR − ηργRR + 1
, ΨγSD

)
6 γth

)
= Pr(ΨγSD 6 γth)︸ ︷︷ ︸

Υ1

Pr
(

γSRγRDηρ(1− ηργRR)Ψ
γSRγRDη2ρ2ΨγRR − ηργRR + 1

6 γth

)
︸ ︷︷ ︸

Υ2

.
(24)

Based on (24), Υ1 can be figured out as

Υ1 = Pr(ΨγSD 6 γth) = Pr
(

γSD 6
γth
Ψ

)
= 1− exp

(
−λSDγth

Ψ

)
. (25)

Next, Υ2 can be, thus, computed by

Υ2 = Pr
(

γSRγRDηρ(1− ηργRR)Ψ
γSRγRDη2ρ2ΨγRR − ηργRR + 1

6 γth

)
= Pr

(
γSRD <

γth(1− ηργRR)

ηρ(1− ηργRR)Ψ− γthη2ρ2ΨγRR

)
,

(26)

where γSRD = γSRγRD. From (26), there are two cases to calculate Υ2. In the first case,
when γRR 6 1

ηρ(1+γth)
, we obtain Υ2 = Pr

(
γSRD < γth(1−ηργRR)

ηρ(1−ηργRR)Ψ−γthη2ρ2ΨγRR

)
. In the sec-

ond case, when γRR > 1
ηρ(1+γth)

, we obtain Υ2 = 1. Then, in case γRR 6 1
ηρ(1+γth)

, Υ2 can
be calculated as

Υ2 =
∫ +∞

1
ηρ(1+γth)

fγRR(y)dy +
∫ 1

ηρ(1+γth)

0
FγSRD

[
γth(1− ηρy)

ηρ(1− ηρy)Ψ− γthη2ρ2Ψy

]
fγRR(y)dy. (27)

In order to find Υ2, first, we have to derive the CDF of γSRD. As a result, we claim

FγSRD(x) = Pr(γSRD < x) = Pr
(

γSR <
x

γRD

)
=
∫ +∞

0
FγSR

(
x
y

)
fγRD(y)dy

= 1−
∫ +∞

0
λRD exp

(
−λSRx

y
− λRDy

)
dy.

(28)
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By applying [53] (Eq. 3.324.1), we obtain

FγSRD(x) = 1− 2
√

λSRλRDxK1

(
2
√

λSRλRDx
)

, (29)

where Kν(•) is the modified Bessel function of the second kind with ν-th order. From (26)
and (29), Υ2 can be found as

Υ2 = 1− 2λRR

∫ 1
ηρ(1+γth)

0

√
λSRλRDΛ(y) exp(−λRRy)K1

(
2
√

λSRλRDΛ(y)
)

dy, (30)

where Λ(y) = γth(1−ηρy)
ηρ(1−ηρy)Ψ−γthη2ρ2Ψy . Unfortunately, the integral in Υ2 presents a tough task

in terms of finding a closed-form expression. Therefore, we apply the Gaussian-Chebyshev
quadrature in [54] to approximate this. As a result, Υ2 can be obtained by

Υ2 ≈ 1− πλRR

Nηρ(1 + γth)

N

∑
n=1

√
1− ϕ2

n

√
λSRλRDΛ

(
(1 + ϕn)

2ηρ(1 + γth)

)

× exp
(
−λRR

(1 + ϕn)

2ηρ(1 + γth)

)
K1

(
2

√
λSRλRDΛ

(
(1 + ϕn)

2ηρ(1 + γth)

))
,

(31)

where ϕn = cos
(

2n−1
2N π

)
. Finally, by substituting (25) and (31) into (23), the OP can be,

thus, obtained as

OP ≈
{

1− exp
(
−λSDγth

Ψ

)}{
1− πλRR

Nηρ(1 + γth)

N

∑
n=1

√
1− ϕ2

n

√
λSRλRDΛ

(
(1 + ϕn)

2ηρ(1 + γth)

)

× exp
(
−λRR

(1 + ϕn)

2ηρ(1 + γth)

)
K1

(
2

√
λSRλRDΛ

(
(1 + ϕn)

2ηρ(1 + γth)

))}
.

(32)

3.2. Intercept Probability Analysis

The considered system will be wiretapped if E can successfully decode the received
signals from the source and relay [55,56]. Therefore, the IP is given by

IP = Pr(γE > γth) = 1− Pr(γE < γth)

= 1− {Pr(ΨγSE < γth)}
{

Pr
(

γSRγREηρ(1− ηργRR)Ψ
γSRγREη2ρ2ΨγRR − ηργRR + 1

)
< γth

}
.

(33)

As a similar proof for OP, the IP can be achieved by

IP ≈ 1−
{

1− exp
(
−λSEγth

Ψ

)}{
1− πλRR

Nηρ(1 + γth)

N

∑
n=1

√
1− ϕ2

n

√
λSRλΛ

(
(1 + ϕn)

2ηρ(1 + γth)

)

× exp
(
−λRR

(1 + ϕn)

2ηρ(1 + γth)

)
K1

(
2

√
SRλREΛ

(
(1 + ϕn)

2ηρ(1 + γth)

))}
,

(34)

where Λ(y) = γth(1−ηρy)
ηρ(1−ηρy)Ψ−γthη2ρ2Ψy .

4. Asymptotic Analysis

In this section, we develop the asymptotic equations for OP as the transmitted SNR
approaches infinity, i.e., Ψ→ +∞, to give us more insights into the performance analysis
of the network under consideration.
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4.1. Op Analysis

When Ψ→ +∞, γD can be rewritten as

γΨ→+∞
D ≈ max

(
ΨγSD,

1
ηργRR

− 1
)

. (35)

Then, the OP can be obtained by

OPΨ→+∞ = Pr
(

γΨ→+∞
D < γth

)
= Pr

(
γSD <

γth
Ψ

)
Pr
(

γRR >
1

ηρ(1 + γth)

)
=

[
1− exp

(
−λSDγth

Ψ

)]
exp

(
− λRR

ηρ(1 + γ)

)
.

(36)

4.2. Ip Asymptotic Analysis

As a result, in this case, the IP also can be obtained by

IPΨ→+∞ = exp
(
−λSEγth

Ψ

)[
1− exp

(
− λRR

ηρ(1 + γth)

)]
. (37)

5. Dnn Network

In this section, we propose a DNN to predict the OP and IP without relying on the
statistical model, whereas the traditional analysis and Monte Carlo simulations need an
accurate statistical model. In addition, when the system model is complicated, and it is
difficult to use the mathematical derivation technique, the DNN model, which is a data-
driven approach, becomes an alternate answer. Therefore, the DNN will help the proposed
system to achieve a short run time.

5.1. the DNN Design Description

First, we create a DNN model as a regression issue. As illustrated in Figure 2, the DNN
model consists of an input layer, numerous hidden layers, and an output layer. The
following is a summary of how each layer contributes to training the DNN model:

• Data is sent to the input layer so that the DNN model may determine how the
system parameters relate to the relevant OP/IP. The number of neurons in the input
layer is, therefore, equal to the number of parameters and does not serve as an
activation function;

• The number of hidden layers primarily determines the relationship between the input
and output data. In order to accurately calculate the relationship, each connection in
each hidden neuron has a separate weight and bias. In order to enhance computational
effectiveness, each hidden neuron also has a nonlinear activation function;

• The output layer combines the findings of various hidden layers to predict OP/IP.
As a result, there is just one neuron in the output layer. The neuron in the output layer
lacks an activation function, much like the input layer.

Furthermore, we have 10 neurons corresponding to 10 parameters, as shown in Table 3
for the input layer. In the hidden layers, each layer k with k = 1, . . . , Dhidden has Dneu
neurons, and it employs the exponential linear unit (ELU) activation function, which can
be given as [57,58]

ELU(z) =

{
ϕ(exp(z)− 1), If : z < 0

z, If : z > 0
(38)
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where ϕ denotes the constant value initialized to 1. Since the regression problem tries to
estimate an output value without additional conversion, the output layer comprises one
neuron that uses the linear activation function to produce the predicted OP/IP value, Out.

Table 3. Theparameters for DNN training and testing.

Input Value Input Value

ω 2 λRR [2,4]
dSD 1.5 η 0.8
dSR 1 ρ 0.25
dRD 0.5 γ [0.5,1]
dRE 1 Ψ [−5,25]

I[1]

I[2]

I[10]

ELU

ELU

ELU

ELU

ELU

ELU

Out

Figure 2. A diagram of the DNN architecture.

5.2. Dataset Setup

In this subsection, we generate dataset D as a row vector for each sample i, i.e., Data
[k] = [I[k], OutSim], where I[k] is the feature vector containing all the inputs from the
parameters listed in Table 3. Each feature I[k] is utilized to produce real-value OP/IP
sets from (23) and (33); this is input into the simulation, and a unique matching OutSim
is returned. In conclusion, we built the dataset by generating 105 samples, concatenating
them, and then dividing this into a new dataset with 80% for training (Dtrain), 10% for
validation (Dvali), and 10% for testing (Dtest). Moreover, we set the DNN model to have
four hidden layers and 128 hidden neurons, which is implemented in Python 3.11.4 using
Keras 2.8.0 and TensorFlow 2.8.0. Furthermore, the DNN model is trained in 100 epochs.
The deep model is specifically constructed using hardware with an AMDRyzen Threadrip-
per 3970X 32-core CPU and an Nvidia GeForce RTX-2070 super GPU for rapid training and
experiment simulations.

The estimation accuracy of the DNN model is calculated using the mean-square error

(MSE), which is formally stated as MSE = 1
Dtest

Dtest−1
∑

k=0
[OutPre −OutSim]. Furthermore,

the appropriate weights and biases for each connection are determined by applying the
Adam optimizer [59]. The difference between the natural and predicted OP/IP values
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throughout the full test set, which is specified as RMSE =
√

MSE, is measured by using
the RMSE in the OP/IP prediction.

6. Numerical Results

In this section, we provide the analysis findings to evaluate the proposed system in
terms of OP and IP, as well as the simulation results, by using the Monte Carlo approach,
as per [60,61], to validate our analytical derivations. The main parameter can be shown in
Table 3, except for some specific cases.

In Figure 3, we utilize the validation set to evaluate the accuracy of the training.
As can be observed, when increasing the epoch and number of hidden layers, the MSE
decreased. Moreover, the MSE in the four hidden layers is the best case. Although the DNN
model contains four hidden layers that may generalize the dataset and improve network
capacity, the second and third hidden layers are unable to learn the intricate patterns in a
high-dimensional dataset, resulting in a large MSE.

10 20 30 40 50 60 70 80 90 100
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

Figure 3. MSE convergence in training and evaluating the DNN with varying the hidden layers.

Figures 4 and 5 show the OP and IP versus Ψ(dB) with different γth. As observed,
the OP and IP curves correspond exactly to the Monte Carlo simulation results. By looking
at Figure 4, the OP performance decreases if the Ψ increases. When Ψ is large, the SINR
will significantly improve, and this will make the OP performance better. In Figure 5, it
can be observed that as Ψ increases, the IP performance also increases. This is expected
because an eavesdropper is more likely to overhear the message when the transmission
power at S is higher. At a high SNR, i.e., Ψ→ ∞, it can be seen that the asymptotic OP and
IP curves closely match the actual findings. Specifically, the IP converges to the asymptotic
value when Ψ = 15(dB), whereas the OP converges to the asymptotic value at a higher
Ψ (Ψ > 25(dB), which cannot be seen in Figure 4). In addition, it can be shown that the
DNN-based prediction results are very similar to the simulation and analysis results for
OP and IP, demonstrating the superior prediction capabilities of the DNN.

In Figures 6 and 7, we plot the OP and IP versus λRR with different η. In Figure 6,
increasing the λRR between the transmitting and receiving antennas at the relay decreases
the OP. It can be explained by the fact that increasing λRR will make the γ1

D in (15) larger;
hence, the OP will be better. Moreover, when increasing energy efficiency η, the average
transmit power at R will be higher, and this will then lead to an improvement in OP.
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Furthermore, when increasing λRR and η, the SINR at E becomes larger. Thus, the possibility
of E eavesdropping on information from S and R is also very high. So, the problem is that
we have to trade-off between security and reliability in terms of OP and IP. This means that
if the system wants to operate well, we must accept high eavesdropping information and
vice versa.
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-1
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0

Figure 4. TheOP versus Ψ(dB) when varying γth with η = 0.8, λRR = 2, and ρ = 0.25.
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Figure 5. TheIP versus Ψ(dB) when varying γth with η = 0.8, λRR = 2, and ρ = 0.25.
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Figure 6. The OP versus λRR when varying η with ρ = 0.5, γth = 1, and Ψ = 5(dB).
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Figure 7. The IP versus λRR when varying η with ρ = 0.5, γth = 1, and Ψ = 5(dB).

In Figures 8 and 9, we plot the OP and IP versus Ψ(dB) with different PS factors, ρ.
First, The higher the Ψ value in Figure 8, the better the OP. This is explained by the fact that
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the higher the Ψ value, the more the transmitted power of source S is assigned. Second, it is
easy to observe that the OP decreases when the PS factor increases. Third, it can be seen that
for a small Ψ (Ψ < 5(dB)), the use of a large PS factor is more beneficial. Reversely, at higher
Ψ, the smaller ρ is better. The reason is as follows. For the high-noise environment case,
higher transmitted power at the relay is needed to guarantee successful communication.
That means more energy needs to be harvested at the relay, so a larger ρ is better. On the
other hand, if Ψ is large, then the decoding of the message at the relay is more important.
That means we should select the smaller ρ. As can be observed in Figure 9, the intercept
performance improves when Ψ increases. This is expected because the eavesdropper has a
better chance of overhearing the communication with a greater source transmit power, S.
When Ψ is large enough, the IP can converge to one. The eavesdropper’s IP increases as
the PS factor increases, which is due to the high transmitted power of relay R.

-5 0 5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

Figure 8. TheOP versus Ψ(dB) when varying ρ with η = 0.8, λRR = 2, and γth = 1.

Figures 10 and 11 show the OP and IP versus ρ with different γth, respectively. The ρ
value is significant since it determines not only the quantity of gathered energy at the relay
but also the data transfer. First, we can observe in Figure 10 that increasing the target
data required leads to an increase in OP. Second, when 0.4 < ρ < 0.5, the system achieves
the best OP performance. In addition, when ρ increases the interception, performance
increases, and when increasing γth, this will decrease the interception performance, similar
to Figure 5.
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Figure 9. TheIP versus Ψ(dB) when varying ρ with η = 0.8, λRR = 2, and γth = 1.
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Figure 10. TheOP versus ρ when varying γth with η = 0.8, λRR = 2, and Ψth = 5(dB).
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Figure 11. The IP versus ρ when varying γth with η = 0.8, λRR = 2, and Ψth = 5(dB).

7. Conclusions

We investigated the security and reliability of SWIPT-assistance and self-energy
recycling in an AF-FD relay network consisting of an EH relay and a destination in
the presence of an eavesdropper. We also evaluated the performance of the security–
reliability trade-offs in terms of the OP and IP. Furthermore, Monte Carlo simulation
was utilized to verify and examine the influence of the system settings on network per-
formance, as well as the accuracy of the analytical formulations. The OP/IP asymptotic
analysis was also performed to offer some insight into the system characteristics. Deep
learning was developed as a novel method for predicting the system’s OP and IP with
minimal computing complexity and good accuracy, which has not been investigated pre-
viously. The numerical findings demonstrated that when utilizing DNN prediction, the
OP and IP outcomes were almost identical to the Monte-Carlo simulation and analysis
results. As a result, deploying a DNN as a black box might be viewed as a potentially
promising and effective technique for evaluating system performances via a low-latency
inference procedure that avoids the derivation of complicated closed-form expressions
in actual network contexts.
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