481 research outputs found

    An integrated WebGIS tool to target sustainable livestock management options (SLiM) by context and support their scaling

    Get PDF

    Fabrication and I-V Characterization of ZnO Nanorod Based Metal-Insulator-Semiconductor Junction

    Get PDF
    We report on the characteristics of a ZnO based metal insulator semiconductor (MIS) diode comprised of a heterostructure of n-ZnO nanorods/n-GaN. The MIS structure consisted of unintentional - doped n type ZnO nanorods grown on n-GaN sample using hydrothermal synthesis at low temperature (100°). The ZnO nanorod layer was vertically grown from the GaN sample, having the diameter 100nm and length 2µm. Then, an insulator layer for electrical isolation was deposited on the top of ZnO nanorod layer by using spin coating method. A metal layer (gold) was finally deposited on the top. The I-V dependences show a rectifying diode like behavior with a leakage current of 2.10⁻⁵ A and a threshold voltage of about 3V. Depend on the thickness of the insulator, the I-V dependences of the n-ZnO/n-GaN heterostructure was varied from rectifying behavior to Ohmic and nearly linear.Singapore-MIT Alliance (SMA

    Lunar drill footplate and casing

    Get PDF
    To prevent hole collapse during lunar drilling operations, a casing has been devised of a graphite reinforced polyimide composite which will be able to withstand the lunar environment. Additionally, this casing will be inserted into the ground in segments two meters long which will penetrate the regolith simultaneously with the auger. The vertical action of the mobile platform will provide a downward force to the casing string through a special adaptor, giving the casing the needed impetus to sink the anticipated depth of ten meters. Casing segments will be connected with a simple snap arrangement. Excess casing will be cut off by a cylindrical cutting tool which will also transport the excess casing away from the hole. A footplate will be incorporated to grasp the auger rod string during rod segment additions or removals. The footplate grasping mechanism will consist of a set of vice-like arms, one end of each bearing threaded to a common power screw. The power screw will be threaded such that one end's thread pitch opposes that of the other end. The weight of the auger and rod string will be transmitted through the arms to the power screw and absorbed by a set of three ball bearing assemblies. The power screw will be driven by a one-half horsepower brushless motor actuated by radio control. The footplate will rest on four short legs and be anchored with pins that are an integral part of each leg

    ZnO Nanorods Grown on p-GaN Using Hydrothermal Synthesis and Its Optoelectronic Devices Application

    Get PDF
    The ZnO nanorods with the length of 1-1.5 μm were deposited on p-GaN by hydrothermal synthesis at low temperature 100°C. The structural and optical properties of the as-grown ZnO rods were investigated by X-Ray diffraction (XRD) and photoluminescence (PL) spectra. After annealing treatment the as-grown films in air at 600°C, 30min, and the ZnO rods showed good crystallinity and optical properties with strong UV emission at 378 nm. In addition, a sharp UV emission peak at 369.45 nm with the FWHM 20 meV, which attributed to the bound exciton recombination, was also observed from the ZnO rods at 80K. Next, the e-beam evaporation method was used to deposit metal contact on n-ZnO and p-GaN. Here, we use Au and Ni/Au as metal contacts for n-ZnO and p-GaN, respectively. The current-voltage characteristics of the fabricated n-ZnO/p-GaN heterojunction revealed rectifying behavior with a leakage current of 10⁻⁸ A at -10V, a forward current 4x10⁻⁶ A at 10V bias. The heterojunction also showed a good photoresponse, with the change of the current – voltage characteristics under ultraviolet illumination. Under UV illumination, the forward turn on voltage changed to 7.5V. This result showed the ability to manipulate the electron transport in the ZnO based heterojunction devices.Singapore-MIT Alliance (SMA

    The Topology of Foliations Formed by the Generic K-Orbits of a Subclass of the Indecomposable MD5-Groups

    Full text link
    The present paper is a continuation of [13], [14] of the authors. Specifically, the paper considers the MD5-foliations associated to connected and simply connected MD5-groups such that their Lie algebras have 4-dimensional commutative derived ideal. In the paper, we give the topological classification of all considered MD5-foliations. A description of these foliations by certain fibrations or suitable actions of R2\mathbb{R}^{2} and the Connes' C*-algebras of the foliations which come from fibrations are also given in the paper.Comment: 20 pages, no figur

    Characterization of ZnO Nanorods Grown on GaN Using Aqueous Solution Method

    Get PDF
    Uniformly distributed ZnO nanorods with diameter 70-100 nm and 1-2μm long have been successfully grown at low temperatures on GaN by using the inexpensive aqueous solution method. The formation of the ZnO nanorods and the growth parameters are controlled by reactant concentration, temperature and pH. No catalyst is required. The XRD studies show that the ZnO nanorods are single crystals and that they grow along the c axis of the crystal plane. The room temperature photoluminescence measurements have shown ultraviolet peaks at 388nm with high intensity, which are comparable to those found in high quality ZnO films. The mechanism of the nanorod growth in the aqueous solution is proposed. The dependence of the ZnO nanorods on the growth parameters was also investigated. While changing the growth temperature from 60°C to 150°C, the morphology of the ZnO nanorods changed from sharp tip (needle shape) to flat tip (rod shape). These kinds of structure are useful in laser and field emission application.Singapore-MIT Alliance (SMA

    Investigation of hypersonic flow in the vki h3 wind tunnel: From facility characterization to boundary-layer interaction over low-temperature ablators

    Get PDF
    This work deals with the characterization, in terms of operating conditions, of the H3 hypersonic wind tunnel of the von Karman Institute for Fluid Dynamics (VKI), thus providing a detailed and structured benchmark for the evaluation of testing capabilities in hypersonic wind tunnels, and with the experimental study of the interaction between the boundary layer and the ablation process of low temperature ablative materials. The flow characteristics of the test section of the H3 WT have been assessed by using a pitot rake, for a wider range of operating conditions with respect to previous calibrations. A CFD analysis of the diffuser-ejector system has been carried out to assess its performance, and an experimental test campaign has been performed in order to validate the CFD analyses and completely characterize the facility operating conditions. Finally, a series of experiments with models of increasing size and different shapes has been carried out to determine the blockage effect in the tunnel test section. The H3 WT is then employed to study the boundary layer interaction with the ablative process on low temperature ablative models. These models have been built after having appropriately designed the sintering system. The Planar Laser Induced Fluorescence method has been applied to visualize the flow behavior: a laminar-turbulent transition due to the ablation process has been observed, together with the main flow structures
    corecore