5,062 research outputs found
Experimental analysis of the Strato-rotational Instability in a cylindrical Couette flow
This study is devoted to the experimental analysis of the Strato-rotational
Instability (SRI). This instability affects the classical cylindrical Couette
flow when the fluid is stably stratified in the axial direction. In agreement
with recent theoretical and numerical analyses, we describe for the first time
in detail the destabilization of the stratified flow below the Rayleigh line
(i.e. the stability threshold without stratification). We confirm that the
unstable modes of the SRI are non axisymmetric, oscillatory, and take place as
soon as the azimuthal linear velocity decreases along the radial direction.
This new instability is relevant for accretion disks.Comment: 4 pages, 4 figures. PRL in press 200
Studies on lignification in wheat (Triticum aestivum var. Thatcher) : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Botany at Massey University
PART I Transections of the stem of Triticum were examined after staining with dyes specific for functional groups within the lignin polymer. Anatomical observations suggest that the basis for the rapid increase in the lignin content of this plant 35 to 40 days after germination, is the differentiation of subepidermal sclerenchyma fibres in the stem at this time. The lignin formed in the fibre walls appears to have a higher methoxyl content than the lignin of the xylem vessels. A comparison of the development of lignification with stem elongation and flowering was made and the interrelationship of these processes discussed. PART II The role of p-hydroxyphenyllactic acid in lignification in wheat was investigated. ¹⁴C-labelled tyrosine, p-hydroxyphenyllactic acid (HPLA), and ³H-labelled HPLA were administered separately to the cut ends of shoots of Triticum and the incorporation of label into ethanol-soluble and ethanol-insoluble ferulic (and in some cases only, p-hydroxycinnamic) acid was measured. On the basis of the pattern of incorporation of label from the ¹⁴C-tyrosine, experiments were carried out to determine the route by which HPLA is converted to lignin precursors. A failure to detect label from ³H-HPLA in the cinnamic acids suggests that HPLA is not dehydrated directly to p-hydroxycinnamic acid and is not of regulatory significance in lignification in either 10 or 40 day-old wheat plants. PART III Information from several levels of organization within the plant is drawn together and discussed. Suggestions for further work investigating the controlling factors in lignification are included
Trajectories in interlaced integral pencils of 3-dimensional analytic vector fields are o-minimal
Let X be an analytic vector field defined in a neighborhood of the origin of
R^3, and let I be an analytically non-oscillatory integral pencil of X; that
is, I is a maximal family of analytically non-oscillatory trajectories of X at
the origin all sharing the same iterated tangents. We prove that if I is
interlaced, then for any trajectory T in I, the expansion of the structure
generated over the real field by T and all globally subanalytic sets is
model-complete, o-minimal and polynomially bounded.Comment: 25 pages; refereed versio
The Universal Aspect Ratio of Vortices in Rotating Stratifi?ed Flows: Experiments and Observations
We validate a new law for the aspect ratio of vortices in a
rotating, stratified flow, where and are the vertical half-height and
horizontal length scale of the vortices. The aspect ratio depends not only on
the Coriolis parameter f and buoyancy (or Brunt-Vaisala) frequency of
the background flow, but also on the buoyancy frequency within the vortex
and on the Rossby number of the vortex such that . This law for is obeyed precisely by the
exact equilibrium solution of the inviscid Boussinesq equations that we show to
be a useful model of our laboratory vortices. The law is valid for both
cyclones and anticyclones. Our anticyclones are generated by injecting fluid
into a rotating tank filled with linearly-stratified salt water. The vortices
are far from the top and bottom boundaries of the tank, so there is no Ekman
circulation. In one set of experiments, the vortices viscously decay, but as
they do, they continue to obey our law for , which decreases over time.
In a second set of experiments, the vortices are sustained by a slow continuous
injection after they form, so they evolve more slowly and have larger |Ro|, but
they also obey our law for . The law for is not only validated
by our experiments, but is also shown to be consistent with observations of the
aspect ratios of Atlantic meddies and Jupiter's Great Red Spot and Oval BA. The
relationship for is derived and examined numerically in a companion
paper by Hassanzadeh et al. (2012).Comment: Submitted to the Journal of Fluid Mechanics. Also see the companion
paper by Hassanzadeh et al. "The Universal Aspect Ratio of Vortices in
Rotating Stratifi?ed Flows: Theory and Simulation" 201
The Universal Aspect Ratio of Vortices in Rotating Stratified Flows: Theory and Simulation
We derive a relationship for the vortex aspect ratio (vertical
half-thickness over horizontal length scale) for steady and slowly evolving
vortices in rotating stratified fluids, as a function of the Brunt-Vaisala
frequencies within the vortex and in the background fluid outside the
vortex , the Coriolis parameter , and the Rossby number of the
vortex: . This relation is valid for
cyclones and anticyclones in either the cyclostrophic or geostrophic regimes;
it works with vortices in Boussinesq fluids or ideal gases, and the background
density gradient need not be uniform. Our relation for has many
consequences for equilibrium vortices in rotating stratified flows. For
example, cyclones must have ; weak anticyclones (with . We verify our relation for with numerical simulations of
the three-dimensional Boussinesq equations for a wide variety of vortices,
including: vortices that are initially in (dissipationless) equilibrium and
then evolve due to an imposed weak viscous dissipation or density radiation;
anticyclones created by the geostrophic adjustment of a patch of locally mixed
density; cyclones created by fluid suction from a small localised region;
vortices created from the remnants of the violent breakups of columnar
vortices; and weakly non-axisymmetric vortices. The values of the aspect ratios
of our numerically-computed vortices validate our relationship for ,
and generally they differ significantly from the values obtained from the
much-cited conjecture that in quasi-geostrophic vortices.Comment: Submitted to the Journal of Fluid Mechanics. Also see the companion
paper by Aubert et al. "The Universal Aspect Ratio of Vortices in Rotating
Stratified Flows: Experiments and Observations" 201
The linear instability of the stratified plane Couette flow
We present the stability analysis of a plane Couette flow which is stably
stratified in the vertical direction orthogonally to the horizontal shear.
Interest in such a flow comes from geophysical and astrophysical applications
where background shear and vertical stable stratification commonly coexist. We
perform the linear stability analysis of the flow in a domain which is periodic
in the stream-wise and vertical directions and confined in the cross-stream
direction. The stability diagram is constructed as a function of the Reynolds
number Re and the Froude number Fr, which compares the importance of shear and
stratification. We find that the flow becomes unstable when shear and
stratification are of the same order (i.e. Fr 1) and above a moderate
value of the Reynolds number Re700. The instability results from a
resonance mechanism already known in the context of channel flows, for instance
the unstratified plane Couette flow in the shallow water approximation. The
result is confirmed by fully non linear direct numerical simulations and to the
best of our knowledge, constitutes the first evidence of linear instability in
a vertically stratified plane Couette flow. We also report the study of a
laboratory flow generated by a transparent belt entrained by two vertical
cylinders and immersed in a tank filled with salty water linearly stratified in
density. We observe the emergence of a robust spatio-temporal pattern close to
the threshold values of F r and Re indicated by linear analysis, and explore
the accessible part of the stability diagram. With the support of numerical
simulations we conclude that the observed pattern is a signature of the same
instability predicted by the linear theory, although slightly modified due to
streamwise confinement
Identification of parameters in amplitude equations describing coupled wakes
We study the flow behind an array of equally spaced parallel cylinders. A
system of Stuart-Landau equations with complex parameters is used to model the
oscillating wakes. Our purpose is to identify the 6 scalar parameters which
most accurately reproduce the experimental data of Chauve and Le Gal [{Physica
D {\bf 58}}, pp 407--413, (1992)]. To do so, we perform a computational search
for the minimum of a distance \calj. We define \calj as the sum-square
difference of the data and amplitudes reconstructed using coupled equations.
The search algorithm is made more efficient through the use of a partially
analytical expression for the gradient . Indeed
can be obtained by the integration of a dynamical system propagating backwards
in time (a backpropagation equation for the Lagrange multipliers). Using the
parameters computed via the backpropagation method, the coupled Stuart-Landau
equations accurately predicted the experimental data from Chauve and Le Gal
over a correlation time of the system. Our method turns out to be quite robust
as evidenced by using noisy synthetic data obtained from integrations of the
coupled Stuart-Landau equations. However, a difficulty remains with
experimental data: in that case the several sets of identified parameters are
shown to yield equivalent predictions. This is due to a strong discretization
or ``round-off" error arising from the digitalization of the video images in
the experiment. This ambiguity in parameter identification has been reproduced
with synthetic data subjected to the same kind of discretization.Comment: 25 pages uuencoded compressed PostScript file (58K) with 13 figures
(155K in separated file) Submitted to Physica
Enzymatic Upgrading of Fish and Crustacean Products
Fish wastes constitute an important source of biologically active molecules possessing peculiar properties and practical application promises in various areas ( agriculture, medicine, chemistry, biotechnology ). Several enzymes from crustacean and fish wastes for which sizable stocks of viscera are actually available have been considered. These enzyme activities are namely an aminopeptidase from tuna, a carboxypeptidase from dogfish, a specific crustacean protease extracted from the crab Carcinus maenas and from the cultivated shrimp Penaeus monodon and pepsins from several fish species. A second utilization of these wastes aims to generate biologically active substances (immunostimulants, gastro-intestinal peptides etc. ) through the hydrolysis of marine fish or invertebrates and to use them for enhancing growth and disease resistance of animals or as therapeutical molecules
- …