10,547 research outputs found

    Eco-hydrology of dynamic wetlands in an Australian agricultural landscape: a whole of system approach for understanding climate change impacts

    Get PDF
    Increasing rates of water extraction and regulation of hydrologic processes, coupled with destruction of natural vegetation, pollution and climate change, are jeopardizing the future persistence of wetlands and the ecological and socio-economic functions they support. Globally, it is estimated that 50% of wetlands have been lost since the 1900’s, with agricultural changes being the main cause. In some agricultural areas of Australia, losses as high as 98% have occurred. Wetlands remaining in agricultural landscapes suffer degradation and their resilience and ability to continue functioning under hydrologic and land use changes resulting from climate change may be significantly inhibited. However, information on floodplain wetlands is sparse and knowledge of how ecological functioning and resilience may change under future land use intensification and climate change is lacking in many landscapes. These knowledge gaps pose significant problems for the future sustainable management of biodiversity and agricultural activities which rely on the important services supplied by wetland ecosystems. This research evaluates the impact that hydrology and land use has on the perennial vegetation associated with wetlands in an agricultural landscape, the Condamine Catchment of southeast Queensland, Australia. A geographical information system (GIS) was used to measure hydrological and land use variables and a bayesian modeling averaging approach was used to generate generalised linear models for vegetation response variables. Connectivity with the river and hydrological variability had consistently significant positive relationships with vegetation cover and abundance. Land use practices such as, irrigated agriculture and grazing had consistently significant negative impacts. Consequently, to understand how climate change will impact on the ecohydrological functioning of wetlands, both hydrological and land use changes need to be considered. Results from this research will now be used to investigate how resilient these systems will be to different potential scenarios of climate change

    Extended Hubbard model for mesoscopic transport in donor arrays in silicon

    Get PDF
    Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wavefunction. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions

    Trees in a grazing landscape: vegetation patterns in sheep-grazing agro-ecosystems in Southern Queensland

    Get PDF
    The modification of natural woodland tree densities through tree removal or clearing has been used by landholders to increase native grass production for livestock grazing. This paper describes studies that aim to determine if vegetation management by graziers affect floristic composition, species richness and plant cover (including production attributes) in the Traprock wool-producing region of southern Queensland, Forty-seven sites were sampled across the study area according to vegetation type (ironbark/gum woodland and box woodland), density of mature trees (low: 6 trees/ha, medium: 6-20 trees/ha, and high >20 trees/ha), and the presence or absence of woody regrowth in the understorey to determine vegetation patterns, A subset of 18 sites was selected to establish grazing exclusion experiments in both vegetation types under varying mature tree densities. This paper describes the general patterns in vegetation under differing mature tree densities and provides preliminary results of the 12-month grazing exclusion experiments

    NPRF: A Neural Pseudo Relevance Feedback Framework for Ad-hoc Information Retrieval

    Full text link
    Pseudo-relevance feedback (PRF) is commonly used to boost the performance of traditional information retrieval (IR) models by using top-ranked documents to identify and weight new query terms, thereby reducing the effect of query-document vocabulary mismatches. While neural retrieval models have recently demonstrated strong results for ad-hoc retrieval, combining them with PRF is not straightforward due to incompatibilities between existing PRF approaches and neural architectures. To bridge this gap, we propose an end-to-end neural PRF framework that can be used with existing neural IR models by embedding different neural models as building blocks. Extensive experiments on two standard test collections confirm the effectiveness of the proposed NPRF framework in improving the performance of two state-of-the-art neural IR models.Comment: Full paper in EMNLP 201
    • …
    corecore