1,627 research outputs found

    Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy

    Full text link
    This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. The aqueous alteration is particularly important for unraveling the processes occurring during the earliest times of the Solar System history, as it can give information both on the asteroids thermal evolution and on the localization of water sources in the asteroid belt. We present new spectral observations in the visible region of 80 asteroids belonging to the primitive classes C, G, F, B and P. We combine the present observations with the visible spectra of asteroids available in the literature for a total of 600 primitive main belt asteroids. Our analysis shows that the aqueous alteration sequence starts from the P-type objects, practically unaltered, and increases through the F, B, C, and G asteroids. Around 50% of the observed C-type asteroids show absorption features in the vis. range due to hydrated silicates, implying that more than 70% of them will have a 3 ÎŒ\mum absorption band and thus hydrated minerals on their surfaces. The process dominates in primitive asteroids located between 2.3 and 3.1 AU, that is at smaller heliocentric distances than previously suggested. The aqueous alteration process dominates in the 50--240 km sized primitive asteroids, while it is less effective for bodies smaller than 50 km. No correlation is found between the aqueous alteration process and the asteroids albedo or orbital elements. Comparing the ∌\sim 0.7 ÎŒ\mum band parameters of hydrated silicates and CM2 carbonaceous chondrites, we see that the band center of meteorites is at longer wavelengths than that of asteroids. This difference on center positions may be attributed to different minerals abundances, and to the fact that CM2 available on Earth might not be representative of the whole aqueous altered asteroids population.Comment: Icarus, accepted for publication on 28 January 2014 Manuscript pages: 38; Figures: 13 ; Tables:

    Inhomogeneities on the surface of 21 Lutetia, the asteroid target of the Rosetta mission

    Full text link
    CONTEXT: In July 2010 the ESA spacecraft Rosetta will fly-by the main belt asteroid 21 Lutetia. Several observations of this asteroid have been so far performed, but its surface composition and nature are still a matter of debate. For long time Lutetia was supposed to have a metallic nature due to its high IRAS albedo. Later on it has been suggested to have a surface composition similar to primitive carbonaceous chondrite meteorites, while further observations proposed a possible genetic link with more evolved enstatite chondrite meteorites. AIMS: In order to give an important contribution in solving the conundrum of the nature of Lutetia, in November 2008 we performed visible spectroscopic observations of this asteroid at the Telescopio Nazionale Galileo (TNG, La Palma, Spain). METHODS: Thirteen visible spectra have been acquired at different rotational phases. RESULTS: We confirm the presence of a narrow spectral feature at about 0.47-0.48 micron already found by Lazzarin et al. (2009) on the spectra of Lutetia. We also find a spectral feature at about 0.6 micron, detected by Lazzarin et al. (2004) on one of their Lutetia's spectra. More importantly, our spectra exhibit different spectral slopes between 0.6 and 0.75 micron and, in particular, we found that up to 20% of the Lutetia surface could have flatter spectra. CONCLUSIONS: We detected a variation of the spectral slopes at different rotational phases that could be interpreted as possibly due to differences in the chemical/mineralogical composition, as well as to inhomogeneities of the structure of the Lutetia's surface (e.g., the presence of craters or albedo spots) in the southern hemisphere.Comment: 3 pages, 2 figures. Accepted for publication in Astronomy and Astrophysics. Updated on 25 March 2010

    The triaxial ellipsoid dimensions, rotational pole, and bulk density of ESA Rosetta target asteroid (21) Lutetia

    Full text link
    We seek the best size estimates of the asteroid (21) Lutetia, the direction of its spin axis, and its bulk density, assuming its shape is well described by a smooth featureless triaxial ellipsoid, and to evaluate the deviations from this assumption. Methods. We derive these quantities from the outlines of the asteroid in 307 images of its resolved apparent disk obtained with adaptive optics (AO) at Keck II and VLT, and combine these with recent mass determinations to estimate a bulk density. Our best triaxial ellipsoid diameters for Lutetia, based on our AO images alone, are a x b x c = 132 x 101 x 93 km, with uncertainties of 4 x 3 x 13 km including estimated systematics, with a rotational pole within 5 deg. of ECJ2000 [long,lat] = [45, -7], or EQJ2000 [RA, DEC] = [44, +9]. The AO model fit itself has internal precisions of 1 x 1 x 8 km, but it is evident, both from this model derived from limited viewing aspects and the radius vector model given in a companion paper, that Lutetia has significant departures from an idealized ellipsoid. In particular, the long axis may be overestimated from the AO images alone by about 10 km. Therefore, we combine the best aspects of the radius vector and ellipsoid model into a hybrid ellipsoid model, as our final result, of 124 +/- 5 x 101 +/- 4 x 93 +/- 13 km that can be used to estimate volumes, sizes, and projected areas. The adopted pole position is within 5 deg. of [long, lat] = [52, -6] or[RA DEC] = [52, +12]. Using two separately determined masses and the volume of our hybrid model, we estimate a density of 3.5 +/- 1.1 or 4.3 +/- 0.8 g cm-3 . From the density evidence alone, we argue that this favors an enstatite-chondrite composition, although other compositions are formally allowed at the extremes (low-porosity CV/CO carbonaceous chondrite or high-porosity metallic). We discuss this in the context of other evidence.Comment: 9 pages, 8 figures, 5 tables, submitted to Astronomy and Astrophysic

    Highlights on HIV eradication in 2013

    Get PDF
    Almost 20 years after the introduction of HAART, scientific community, doctors and patients are still struggling with the absence of effective strategies aimed at eradicating HIV infection, or at preventing it through a vaccin

    The ESO Key-Programme ``A Homogeneous Bright QSO Survey'' - I The Methods and the ``Deep'' Fields

    Get PDF
    This is the first paper in a series aimed at defining a statistically significant sample of QSOs in the range 15<B<18.75 15 < B < 18.75 and 0.3<z<2.2 0.3 < z < 2.2. The selection is carried out using direct plates obtained at the ESO and UK Schmidt Telescopes, scanned with the COSMOS facility and searched for objects with an ultraviolet excess. Follow-up spectroscopy, carried out at ESO La Silla, is used to classify each candidate. In this initial paper, we describe the scientific objectives of the survey; the selection and observing techniques used. We present the first sample of 285 QSOs (MB<−23M_B < -23) in a 153 deg2^2 area, covered by the six ``deep'' fields, intended to obtain significant statistics down B≃18.75B \simeq 18.75 with unprecedented photometric accuracy. From this database, QSO counts are determined in the magnitude range 17<B<18.75 17 < B < 18.75.Comment: 21 pages uuencoded compressed postscript, to appear in Astronomy and Astrophysics Supplements, 199

    COVID-19 and surgical training in Italy: Residents and young consultants perspectives from the battlefield

    Get PDF
    COVID-19 is seriously affecting Italy, putting the health system under extreme pressure. Training of medical students and residents is also suffering from this with the suspension of lectures and clinical rotations. What solutions have been taken to deal with the issue
    • 

    corecore