1,149 research outputs found

    Energy analysis of industrial climatization by an innovative radiant condensing system

    Get PDF
    Radiant heating plants have become increasingly popular in the last decades, particularly for industrial applications. Generally, they are high temperature radiant heating type, even if more recently low temperature radiant floors have increased their spread due to the increased thermal insulation of buildings. Moreover, radiant floors allow for cooling as well. In this paper, energy performance of a high temperature radiant tubes heating plant coupled to a condensing system for the climatization of an industrial building are investigated by dynamic simulation. A Trnsys type is modified in order to simulate the behavior of the high temperature condensing system: both the radiative (between the heating and the surrounding surfaces) and the convective heat exchanges with suitable devices (like baffles applied in order to reduce convection and consequent thermal stratification) are considered. Energy performance is compared to that of two more traditional plants such as warm air heater, and low temperature radiant floor coupled to condensing boiler. Finally, some considerations about the energy performance of the radiant tubes system in cooling mode are reported

    PVT and ETC coupling for annual heating and cooling by absorption heat pumps

    Get PDF
    Until recently, solar assisted heat pumps have used solar collectors as a cold source. Solar collectors provide, when possible, direct heat, otherwise they offer temperature levels to the heat pump evaporator higher than the outside air. At the same time, solar thermal cooling exploits the solar collectors and the absorption chiller only in hot months. Photovoltaic/Thermal (PVT) modules have been available on the market in recent years for solar cogeneration, but their utilization can be problematic due to PhotoVoltaic (PV) cell damage in cases where there is no heating request. This paper considers the possibility of coupling evacuated tube collectors and photovoltaic/thermal modules to drive an absorption heat pump-based plant operating as an absorption chiller in the summertime. The cold source is the solar energy and the ground, which is recharged by the solar thermal and photovoltaic/thermal collectors and by the cooling of the absorber-condenser in mid-seasons and summer. This study analyzes the system behavior in yearly operation and evaluates the role of suitable storage tanks in two different climates, varying the size of the two solar fields and the generator tank. In the best plant configuration, a primary energy ratio of 26.6 in colder climates with cloudy skies and 20 in hotter climates with clearer skies is obtained

    The triaxial ellipsoid dimensions, rotational pole, and bulk density of ESA Rosetta target asteroid (21) Lutetia

    Full text link
    We seek the best size estimates of the asteroid (21) Lutetia, the direction of its spin axis, and its bulk density, assuming its shape is well described by a smooth featureless triaxial ellipsoid, and to evaluate the deviations from this assumption. Methods. We derive these quantities from the outlines of the asteroid in 307 images of its resolved apparent disk obtained with adaptive optics (AO) at Keck II and VLT, and combine these with recent mass determinations to estimate a bulk density. Our best triaxial ellipsoid diameters for Lutetia, based on our AO images alone, are a x b x c = 132 x 101 x 93 km, with uncertainties of 4 x 3 x 13 km including estimated systematics, with a rotational pole within 5 deg. of ECJ2000 [long,lat] = [45, -7], or EQJ2000 [RA, DEC] = [44, +9]. The AO model fit itself has internal precisions of 1 x 1 x 8 km, but it is evident, both from this model derived from limited viewing aspects and the radius vector model given in a companion paper, that Lutetia has significant departures from an idealized ellipsoid. In particular, the long axis may be overestimated from the AO images alone by about 10 km. Therefore, we combine the best aspects of the radius vector and ellipsoid model into a hybrid ellipsoid model, as our final result, of 124 +/- 5 x 101 +/- 4 x 93 +/- 13 km that can be used to estimate volumes, sizes, and projected areas. The adopted pole position is within 5 deg. of [long, lat] = [52, -6] or[RA DEC] = [52, +12]. Using two separately determined masses and the volume of our hybrid model, we estimate a density of 3.5 +/- 1.1 or 4.3 +/- 0.8 g cm-3 . From the density evidence alone, we argue that this favors an enstatite-chondrite composition, although other compositions are formally allowed at the extremes (low-porosity CV/CO carbonaceous chondrite or high-porosity metallic). We discuss this in the context of other evidence.Comment: 9 pages, 8 figures, 5 tables, submitted to Astronomy and Astrophysic

    The ESO Key-Programme ``A Homogeneous Bright QSO Survey'' - I The Methods and the ``Deep'' Fields

    Get PDF
    This is the first paper in a series aimed at defining a statistically significant sample of QSOs in the range 15<B<18.75 15 < B < 18.75 and 0.3<z<2.2 0.3 < z < 2.2. The selection is carried out using direct plates obtained at the ESO and UK Schmidt Telescopes, scanned with the COSMOS facility and searched for objects with an ultraviolet excess. Follow-up spectroscopy, carried out at ESO La Silla, is used to classify each candidate. In this initial paper, we describe the scientific objectives of the survey; the selection and observing techniques used. We present the first sample of 285 QSOs (MB<23M_B < -23) in a 153 deg2^2 area, covered by the six ``deep'' fields, intended to obtain significant statistics down B18.75B \simeq 18.75 with unprecedented photometric accuracy. From this database, QSO counts are determined in the magnitude range 17<B<18.75 17 < B < 18.75.Comment: 21 pages uuencoded compressed postscript, to appear in Astronomy and Astrophysics Supplements, 199

    Physical properties of ESA Rosetta target asteroid (21) Lutetia: Shape and flyby geometry

    Full text link
    Aims. We determine the physical properties (spin state and shape) of asteroid (21) Lutetia, target of the ESA Rosetta mission, to help in preparing for observations during the flyby on 2010 July 10 by predicting the orientation of Lutetia as seen from Rosetta. Methods. We use our novel KOALA inversion algorithm to determine the physical properties of asteroids from a combination of optical lightcurves, disk-resolved images, and stellar occultations, although the latter are not available for (21) Lutetia. Results. We find the spin axis of (21) Lutetia to lie within 5 degrees of ({\lambda} = 52 deg., {\beta} = -6 deg.) in Ecliptic J2000 reference frame (equatorial {\alpha} = 52 deg., {\delta} = +12 deg.), and determine an improved sidereal period of 8.168 270 \pm 0.000 001 h. This pole solution implies the southern hemisphere of Lutetia will be in "seasonal" shadow at the time of the flyby. The apparent cross-section of Lutetia is triangular as seen "pole-on" and more rectangular as seen "equator-on". The best-fit model suggests the presence of several concavities. The largest of these is close to the north pole and may be associated with large impacts.Comment: 17 pages, 5 figures, 3 tables, submitted to Astronomy and Astrophysic

    A comparative review on the well-studied GAT1 and the understudied BGT-1 in the brain

    Get PDF
    γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Its homeostasis is maintained by neuronal and glial GABA transporters (GATs). The four GATs identified in humans are GAT1 (SLC6A1), GAT2 (SLC6A13), GAT3 (SLC6A11), and betaine/GABA transporter-1 BGT-1 (SLC6A12) which are all members of the solute carrier 6 (SLC6) family of sodium-dependent transporters. While GAT1 has been investigated extensively, the other GABA transporters are less studied and their role in CNS is not clearly defined. Altered GABAergic neurotransmission is involved in different diseases, but the importance of the different transporters remained understudied and limits drug targeting. In this review, the well-studied GABA transporter GAT1 is compared with the less-studied BGT-1 with the aim to leverage the knowledge on GAT1 to shed new light on the open questions concerning BGT-1. The most recent knowledge on transporter structure, functions, expression, and localization is discussed along with their specific role as drug targets for neurological and neurodegenerative disorders. We review and discuss data on the binding sites for Na+, Cl-, substrates, and inhibitors by building on the recent cryo-EM structure of GAT1 to highlight specific molecular determinants of transporter functions. The role of the two proteins in GABA homeostasis is investigated by looking at the transport coupling mechanism, as well as structural and kinetic transport models. Furthermore, we review information on selective inhibitors together with the pharmacophore hypothesis of transporter substrates
    corecore