432 research outputs found

    Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies

    Full text link
    Plasma lenses in the host galaxies of fast radio bursts (FRBs) can strongly modulate FRB amplitudes for a wide range of distances, including the ∼\sim Gpc distance of the repeater FRB121102. To produce caustics, the lens' dispersion-measure depth (DMℓ{\rm DM}_{\ell}), scale size (aa), and distance from the source (dsld_{\rm sl}) must satisfy DMℓdsl/a2≳0.65 pc2 AU−2 cm−3{\rm DM}_{\ell} d_{\rm sl} / a^2 \gtrsim 0.65~ {\rm pc^2 \ AU^{-2} \ cm^{-3}}. Caustics produce strong magnifications (≲102\lesssim 10^2) on short time scales (∼\sim hours to days and perhaps shorter) along with narrow, epoch dependent spectral peaks (0.1 to 1~GHz). However, strong suppression also occurs in long-duration (∼\sim months) troughs. For geometries that produce multiple images, the resulting burst components will arrive differentially by <1 μ< 1~\mus to tens of ms and they will show different apparent dispersion measures, δDMapparent∼1\delta{\rm DM}_{\rm apparent} \sim 1 pc cm−3^{-3}. Arrival time perturbations may mask any underlying periodicity with period ≲1\lesssim 1 s. When arrival times differ by less than the burst width, interference effects in dynamic spectra are expected. Strong lensing requires source sizes smaller than (Fresnel scale)2/a({\rm Fresnel~scale)^2} / a, which can be satisfied by compact objects such as neutron star magnetospheres but not by AGNs. Much of the phenomenology of the repeating fast radio burst source FRB121102 is similar to lensing effects. The overall picture can be tested by obtaining wideband spectra of bursts (from <1<1 to 10 GHz and possibly higher), which can also be used to characterize the plasma environment near FRB sources. A rich variety of phenomena is expected from an ensemble of lenses near the FRB source. We discuss constraints on densities, magnetic fields, and locations of plasma lenses related to requirements for lensing to occur.Comment: 11 pages, 7 figures, submitted to the Astrophysical Journa

    A Blind Search for Magnetospheric Emissions from Planetary Companions to Nearby Solar-type Stars

    Full text link
    This paper reports a blind search for magnetospheric emissions from planets around nearby stars. Young stars are likely to have much stronger stellar winds than the Sun, and because planetary magnetospheric emissions are powered by stellar winds, stronger stellar winds may enhance the radio luminosity of any orbiting planets. Using various stellar catalogs, we selected nearby stars (<~ 30 pc) with relatively young age estimates (< 3 Gyr). We constructed different samples from the stellar catalogs, finding between 100 and several hundred stars. We stacked images from the 74-MHz (4-m wavelength) VLA Low-frequency Sky Survey (VLSS), obtaining 3\sigma limits on planetary emission in the stacked images of between 10 and 33 mJy. These flux density limits correspond to average planetary luminosities less than 5--10 x 10^{23} erg/s. Using recent models for the scaling of stellar wind velocity, density, and magnetic field with stellar age, we estimate scaling factors for the strength of stellar winds, relative to the Sun, in our samples. The typical kinetic energy carried by the stellar winds in our samples is 15--50 times larger than that of the Sun, and the typical magnetic energy is 5--10 times larger. If we assume that every star is orbited by a Jupiter-like planet with a luminosity larger than that of the Jovian decametric radiation by the above factors, our limits on planetary luminosities from the stacking analysis are likely to be a factor of 10--100 above what would be required to detect the planets in a statistical sense. Similar statistical analyses with observations by future instruments, such as the Low Frequency Array (LOFAR) and the Long Wavelength Array (LWA), offer the promise of improvements by factors of 10--100.Comment: 11 pages; AASTeX; accepted for publication in A

    RFI Identification and Mitigation Using Simultaneous Dual Station Observations

    Full text link
    RFI mitigation is a critically important issue in radio astronomy using existing instruments as well as in the development of next-generation radio telescopes, such as the Square Kilometer Array (SKA). Most designs for the SKA involve multiple stations with spacings of up to a few thousands of kilometers and thus can exploit the drastically different RFI environments at different stations. As demonstrator observations and analysis for SKA-like instruments, and to develop RFI mitigation schemes that will be useful in the near term, we recently conducted simultaneous observations with Arecibo Observatory and the Green Bank Telescope (GBT). The observations were aimed at diagnosing RFI and using the mostly uncorrelated RFI between the two sites to excise RFI from several generic kinds of measurements such as giant pulses from Crab-like pulsars and weak HI emission from galaxies in bands heavily contaminated by RFI. This paper presents observations, analysis, and RFI identification and excision procedures that are effective for both time series and spectroscopy applications using multi-station data.Comment: 12 pages, 9 figures (4 in ps and 5 in jpg formats), Accepted for publication in Radio Scienc

    VLA Observations of Single Pulses from the Galactic Center Magnetar

    Full text link
    We present the results of a 7-12 GHz phased-array study of the Galactic center magnetar J1745-2900 with the Karl G. Jansky Very Large Array (VLA). Using data from two 6.5 hour observations from September 2014, we find that the average profile is comprised of several distinct components at these epochs and is stable over ∼\simday timescales and ∼\simGHz frequencies. Comparison with additional phased VLA data at 8.7 GHz shows significant profile changes on longer timescales. The average profile at 7-12 GHz is dominated by the jitter of relatively narrow pulses. The pulses in each of the four main profile components seen in September 2014 are uncorrelated in phase and amplitude, though there is a small but significant correlation in the occurrence of pulses in two of the profile components. Using the brightest pulses, we measure the dispersion and scattering parameters of J1745-2900. A joint fit of 38 pulses gives a 10 GHz pulse broadening time of τsc,10=0.09±0.03 ms\tau_{\rm sc, 10} = 0.09 \pm 0.03~\rm ms and a dispersion measure of DM=1760−1.3+2.4 pc cm−3{\rm DM} = 1760^{+2.4}_{-1.3}~{\rm pc~cm}^{-3}. Both of these results are consistent with previous measurements, which suggests that the scattering and dispersion measure of J1745-2900 may be stable on timescales of several years.Comment: 20 pages, 10 figures, published in Ap

    The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background

    Get PDF
    We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the solar system ephemeris (SSE) model used and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first pulsar-timing array (PTA) constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW-strain amplitude of A_(GWB) < 1.45 × 10^(−15) at a frequency of f = 1 yr^(−1) for a fiducial f^(−2/3) power-law spectrum and with interpulsar correlations modeled. This is a factor of ~2 improvement over the NANOGrav nine-year limit calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass density in galactic cores, the eccentricity of SMBH binaries, and SMBH–galactic-bulge scaling relationships. We constrain the cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of Gμ < 5.3 × 10^(−11)—a factor of ~2 better than the published NANOGrav nine-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation universe) is Ω_(GWB)(f) h^2 < 3.4 × 10^(−10)

    Parallax and Kinematics of PSR B0919+06 from VLBA Astrometry and Interstellar Scintillometry

    Get PDF
    Results are presented from a long-term astrometry program on PSR B0919+06 using the NRAO Very Long Baseline Array. With ten observations (seven epochs) between 1994--2000, we measure a proper motion of 18.35 +/- 0.06 mas/yr in RA, 86.56 +/- 0.12 mas/yr in Dec, and a parallax of 0.83 +/- 0.13 mas (68% confidence intervals). This yields a pulsar distance of 1.21 +/- 0.19 kpc, making PSR B0919+06 the farthest pulsar for which a trigonometric parallax has been obtained, and the implied pulsar transverse speed is 505 +/- 80 km/s. Combining the distance estimate with interstellar scintillation data spanning 20 years, we infer the existence of a patchy or clumpy scattering screen along the line of sight in addition to the distributed electron density predicted by models for the Galaxy, and constrain the location of this scattering region to within about 250 parsecs of the Sun. Comparison with the lines of sight towards other pulsars in the same quadrant of the Galaxy permits refinement of our knowledge of the local interstellar matter in this direction.Comment: 12 pages, includes 4 figures and 3 tables, uses AASTeX 5 (included); ApJ submitte

    Observing Radio Pulsars in the Galactic Centre with the Square Kilometre Array

    Full text link
    The discovery and timing of radio pulsars within the Galactic centre is a fundamental aspect of the SKA Science Case, responding to the topic of "Strong Field Tests of Gravity with Pulsars and Black Holes" (Kramer et al. 2004; Cordes et al. 2004). Pulsars have in many ways proven to be excellent tools for testing the General theory of Relativity and alternative gravity theories (see Wex (2014) for a recent review). Timing a pulsar in orbit around a companion, provides a unique way of probing the relativistic dynamics and spacetime of such a system. The strictest tests of gravity, in strong field conditions, are expected to come from a pulsar orbiting a black hole. In this sense, a pulsar in a close orbit (PorbP_{\rm orb} < 1 yr) around our nearest supermassive black hole candidate, Sagittarius A* - at a distance of ~8.3 kpc in the Galactic centre (Gillessen et al. 2009a) - would be the ideal tool. Given the size of the orbit and the relativistic effects associated with it, even a slowly spinning pulsar would allow the black hole spacetime to be explored in great detail (Liu et al. 2012). For example, measurement of the frame dragging caused by the rotation of the supermassive black hole, would allow a test of the "cosmic censorship conjecture." The "no-hair theorem" can be tested by measuring the quadrupole moment of the black hole. These are two of the prime examples for the fundamental studies of gravity one could do with a pulsar around Sagittarius A*. As will be shown here, SKA1-MID and ultimately the SKA will provide the opportunity to begin to find and time the pulsars in this extreme environment.Comment: 14 pages, 5 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)04
    • …
    corecore