4 research outputs found

    Managing aflatoxin in smallholder groundnut production in Southern Africa: Paired comparison of the windrow and Mandela cock techniques

    Get PDF
    Timely drying of groundnuts is important after harvest. In most parts of sub-Saharan Africa, moisture content reduction is practically achieved by solar drying. In particular, the groundnuts are traditionally cured in the field using the inverted windrow drying technique. Recently, the Mandela cock technique, a ventilated stack of groundnut plants with a chimney at the center, has been introduced in the southern Africa region with the aim of reducing moisture content and the risk of aflatoxin contamination. An on-farm study was conducted in Malawi to compare the effectiveness of the Mandela cock and Windrow drying techniques with respect to aflatoxin control. For two consecutive years, farmers (2016, n = 29; 2017; n = 26) were recruited to test each of the two drying techniques. A mixed-design ANOVA showed that the Mandela cock groundnut drying technique led to sig- nificantly (p < 0.001) higher aflatoxin levels in groundnut seed compared to the traditional inverted windrow drying (5.7 μg/kg, geometric mean vs 2.5 μg/kg in 2016 and 37.6 μg/kg vs 8.4 μg/kg in 2017). The present findings clearly demonstrate the need for regulation and technology validation if farmers and consumers are to benefit

    Standards Compliance and Health Implications of Bottled Water in Malawi

    No full text
    Many people around the globe prefer bottled water especially in developing countries, where tap water is not drinkable. This study investigated the quality of bottled drinking water sold in Lilongwe city, Malawi. Compliance with Malawi Standards (MS) 560 (2004) for natural mineral water, MS 699 (2004) for bottled water and the World Health Organisation guidelines for drinking water were examined. Bottled water from different 12 brands was purchased from local stores and analysed for its pH, total dissolved solids (TDS), EC, turbidity, Ca, Mg, Na, K, Fe, NO3−, Cl−, F−, SO42−, hardness, alkalinity, and Escherichia coli. A Hierarchical Cluster Analysis (HCA) resulted in two clusters in which most of the brands (92%, n = 12) belonged to one group. The two clusters and significant differences (ANOVA p < 0.05) in chemical compositions among the brands were attributed to the variations in the water source and the treatment processes. The results showed that 10 brands did not comply with the MS 699 (2004) turbidity standard (1 NTU) and the pH of one of the brands was below the minimum MS 699 (2004) standard of 6.50. This research showed that 12 brands had bottle labelling errors and discrepancies in chemical composition. The article highlighted the need for a strict inspection from the responsible governmental ministry to improve water quality and to adjust water bottles’ labels according to water characteristics
    corecore