19 research outputs found

    Aromatase Is a Direct Target of FOXL2: C134W in Granulosa Cell Tumors via a Single Highly Conserved Binding Site in the Ovarian Specific Promoter

    Get PDF
    BACKGROUND: Granulosa cell tumors (GCT) of the ovary often express aromatase and synthesize estrogen, which in turn may influence their progression. Recently a specific point mutation (C134W) in the FOXL2 protein was identified in >94% of adult-type GCT and it is likely to contribute to their development. A number of genes are known to be regulated by FOXL2, including aromatase/CYP19A1, but it is unclear which are direct targets and whether the C134W mutation alters their regulation. Recently, it has been reported that FOXL2 forms a complex with steroidogenic factor 1 (SF-1) which is a known regulator of aromatase in granulosa cells. METHODOLOGY/PRINCIPAL FINDINGS: In this work, the human GCT-derived cell lines KGN and COV434 were heterozygous and wildtype for the FOXL2:C134W mutation, respectively. KGN had abundant FOXL2 mRNA expression but it was not expressed in COV434. Expression of exogenous FOXL2:C134W in COV434 cells induced higher expression of a luciferase reporter for the ovarian specific aromatase promoter, promoter II (PII) (-516bp) than expression of wildtype FOXL2, but did not alter induction of a similar reporter for the steroidogenic acute regulatory protein (StAR) promoter (-1300bp). Co-immunoprecipitation confirmed that FOXL2 bound SF-1 and that it also bound its homologue, liver receptor homologue 1 (LRH-1), however, the C134W mutation did not alter these interactions or induce a selective binding of the proteins. A highly conserved putative binding site for FOXL2 was identified in PII. FOXL2 was demonstrated to bind the site by electrophoretic mobility shift assays (EMSA) and site-directed mutagenesis of this element blocked its differential induction by wildtype FOXL2 and FOXL2:C134W. CONCLUSIONS/SIGNIFICANCE: These findings suggest that aromatase is a direct target of FOXL2:C134W in adult-type GCT via a single distinctive and highly conserved binding site in PII and therefore provide insight into the pathogenic mechanism of this mutation

    Cell-intrinsic differences between human airway epithelial cells from children and adults

    Get PDF
    Summary The airway epithelium is a protective barrier that is maintained by the self-renewal and differentiation of basal stem cells. Increasing age is a principle risk factor for chronic lung diseases, but few studies have explored age-related molecular or functional changes in the airway epithelium. We retrieved epithelial biopsies from histologically normal tracheobronchial sites from pediatric and adult donors and compared their cellular composition and gene expression profile (in laser capture-microdissected whole epithelium, fluorescence-activated cell-sorted basal cells and basal cells in cell culture). Histologically, pediatric and adult tracheobronchial epithelium were similar in composition. We observed age-associated changes in RNA sequencing studies, including higher interferon-associated gene expression in pediatric epithelium. In cell culture, pediatric cells had higher colony-formation ability, sustained in vitro growth and out-competed adult cells in a direct competitive proliferation assay. Our results demonstrate cell-intrinsic differences between airway epithelial cells from children and adults in both homeostatic and proliferative states

    Time-resolved single-cell analysis of Brca1 associated mammary tumourigenesis reveals aberrant differentiation of luminal progenitors

    Get PDF
    Abstract: It is unclear how genetic aberrations impact the state of nascent tumour cells and their microenvironment. BRCA1 driven triple negative breast cancer (TNBC) has been shown to arise from luminal progenitors yet little is known about how BRCA1 loss-of-function (LOF) and concomitant mutations affect the luminal progenitor cell state. Here we demonstrate how time-resolved single-cell profiling of genetically engineered mouse models before tumour formation can address this challenge. We found that perturbing Brca1/p53 in luminal progenitors induces aberrant alveolar differentiation pre-malignancy accompanied by pro-tumourigenic changes in the immune compartment. Unlike alveolar differentiation during gestation, this process is cell autonomous and characterised by the dysregulation of transcription factors driving alveologenesis. Based on our data we propose a model where Brca1/p53 LOF inadvertently promotes a differentiation program hardwired in luminal progenitors, highlighting the deterministic role of the cell-of-origin and offering a potential explanation for the tissue specificity of BRCA1 tumours

    The Orphan Nuclear Receptor LRH-1 and ERα Activate GREB1 Expression to Induce Breast Cancer Cell Proliferation

    Get PDF
    BACKGROUND: Liver Receptor Homolog 1 (LRH-1, NR5A2) is an orphan nuclear receptor that is over-expressed in cancers in tissues such as the breast, colon and pancreas. LRH-1 plays important roles in embryonic development, steroidogenesis and cholesterol homeostasis. In tumor cells, LRH-1 induces proliferation and cell cycle progression. High LRH-1 expression is demonstrated in breast cancers, positively correlating with ERα status and aromatase activity. LRH-1 dependent cellular mechanisms in breast cancer epithelial cells are poorly defined. Hence in the present study we investigated the actions of LRH-1 in estrogen receptor α (ERα) positive breast cancer cells. RESULTS: The study aimed to investigate LRH-1 dependent mechanisms that promote breast cancer proliferation. We identified that LRH-1 regulated the expression of Growth Regulation by Estrogen in Breast Cancer 1 (GREB1) in MCF-7 and MDA-MB-231 cells. Over-expression of LRH-1 increased GREB1 mRNA levels while knockdown of LRH-1 reduced its expression. GREB1 is a well characterised ERα target gene, with three estrogen response elements (ERE) located on its promoter. Chromatin immunoprecipitation studies provided evidence of the co-localisation of LRH-1 and ERα at all three EREs. With electrophoretic mobility shift assays, we demonstrated direct binding of LRH-1 to EREs located on GREB1 and Trefoil Factor 1 (TFF1, pS2) promoters. LRH-1 and ERα co-operatively activated transcription of ERE luciferase reporter constructs suggesting an overlap in regulation of target genes in breast cancer cells. Over-expression of LRH-1 resulted in an increase in cell proliferation. This effect was more pronounced with estradiol treatment. In the presence of ICI 182,780, an ERα antagonist, LRH-1 still induced proliferation. CONCLUSIONS: We conclude that in ER-positive breast cancer cells, LRH-1 promotes cell proliferation by enhancing ERα mediated transcription of target genes such as GREB-1. Collectively these findings indicate the importance of LRH-1 in the progression of hormone-dependent breast cancer and implicate LRH-1 as a potential avenue for drug development

    LRH-1 acts synergistically with ERα to activate ERE containing promoters.

    No full text
    <p>Transcriptional activation of (a) 2×ERE and (b) GREB-ERE2 luciferase reporters by ERα and LRH-1 with vehicle (veh) or 10 nM 17β-estradiol (E2). Estrogen-deprived MCF-7 cells were over expressed with LRH-1 or ERα alone, or in combination with the appropriate reporter construct. Cells were treated with 17β-estradiol for 16 h prior to luciferase assays. Data is presented as mean+SE, n = 3 separate experiments, treatments in triplicate per experiment. *P&lt;0.05, *P&lt;0.01, ***P&lt;0.001 compared to vehicle control unless indicated by reference line.</p

    LRH-1 induces cell proliferation in 17β-estradiol and ICI 182,780 treated cells.

    No full text
    <p>Cell proliferation was measured in pcDNA alone transfected, estrogen-deprived MCF-7 cells (control) or LRH-1 over-expressing (+LRH-1) MCF-7 cells treated with vehicle, 10 nM 17β-estradiol (E2) or 10 nM 17β-estradiol and 1 nM ICI 182,780, an ERα antagonist for 5 days. Data is presented as mean+SEM, n = 3 separate experiments, triplicate treatments per experiment, ***P&lt;0.001 compared to control transfected cells; a,b P&lt;0.001 compared to vehicle control.</p
    corecore