9,526 research outputs found

    The radial evolution of the solar wind, 1-10 AU

    Get PDF
    The interplanetary plasma and magnetic field observations from 1 to 10 AU are reviewed. Over this distance no clear reduction in average speed is seen. The range of wind speeds becomes smaller though high speed streams are still observed. The density, temperature and magnetic field profiles become dominated by the large values seen in the co-rotating interaction regions. The temperature falls more slowly than would be expected from a simple, adiabatic model. Co-rotating shocks appear beyond approximately 3 AU in Voyager data as opposed to beyond approximately 1.5 AU in the Pioneer data. Reverse shocks appear later than forward shocks; reverse shocks do not begin to appear until approximately 4 AU; reverse shocks appear to decay more rapidly than forward shocks. No clear effect due to interaction with the interstellar medium was seen in this radial range

    Observation of the angular momentum flux carried by the solar wind

    Get PDF
    Angular momentum flux carried by solar wind calculated from Mariner 5 dat

    An east-west asymmetry in the solar wind velocity

    Get PDF
    East-west asymmetry in solar wind velocit

    Deceleration of the solar wind in the Earth foreshock region: ISEE 2 and IMP 8 observations

    Get PDF
    The deceleration of the solar wind in the region of the interplanetary space filled by ions backstreaming from the Earth bow shock was studied using a two spacecraft technique. This deceleration, which is correlated with the "diffuse" but not with the "reflected" ion population, depends on the solar wind bulk velocity: at low velocities (below 300 km/sec) the velocity decrease is about 5 km/sec, while at higher velocities (above 400 km/sec) the decrease may be as large as 30 km/sec. Along with this deceleration, the solar wind undergoes a deflection of about 1 deg away from the direction of the Earth bow shock. The energy balance shows that the kinetic energy loss far exceeds the thermal energy which is possibly gained by the solar wind, therefore, at least part of this energy must go into waves and/or into the backstreaming ions

    A low-mass faraday cup experiment for the solar wind

    Get PDF
    Faraday cups have proven to be very reliable and accurate instruments capable of making 3-D velocity distribution measurements on spinning or 3-axis stabilized spacecraft. Faraday cup instrumentation continues to be appropriate for heliospheric missions. As an example, the reductions in mass possible relative to the solar wind detection system about to be flown on the WIND spacecraft were estimated. Through the use of technology developed or used at the MIT Center for Space Research but were not able to utilize for WIND: surface-mount packaging, field-programmable gate arrays, an optically-switched high voltage supply, and an integrated-circuit power converter, it was estimated that the mass of the Faraday Cup system could be reduced from 5 kg to 1.8 kg. Further redesign of the electronics incorporating hybrid integrated circuits as well as a decrease in the sensor size, with a corresponding increase in measurement cycle time, could lead to a significantly lower mass for other mission applications. Reduction in mass of the entire spacecraft-experiment system is critically dependent on early and continual collaborative efforts between the spacecraft engineers and the experimenters. Those efforts concern a range of issues from spacecraft structure to data systems to the spacecraft power voltage levels. Requirements for flight qualification affect use of newer, lighter electronics packaging and its implementation; the issue of quality assurance needs to be specifically addressed. Lower cost and reduced mass can best be achieved through the efforts of a relatively small group dedicated to the success of the mission. Such a group needs a fixed budget and greater control over quality assurance requirements, together with a reasonable oversight mechanism

    Solar wind data from the MIT plasma experiments on Pioneer 6 and Pioneer 7

    Get PDF
    Hourly averages are presented of solar wind proton parameters obtained from experiments on the Pioneer 6 and Pioneer 7 spacecraft during the period December 16, 1965 to August 1971. The number of data points available on a given day depends upon the spacecraft-earth distance, the telemetry bit rate, and the ground tracking time allotted to each spacecraft. Thus, the data obtained earlier in the life of each spacecraft are more complete. The solar wind parameters are given in the form of plots and listings. Trajectory information is also given along with a detailed description of the analysis procedures used to extract plasma parameters from the measured data

    Cosmic ray modulation and turbulent interaction regions near 11 AU

    Get PDF
    When Voyager 2 was near 11 AU, the counting rate of nuclei approx 75 MeV/nucleon decreased during the interval from July, 1982 to November, 1982, and it increased thereafter until August, 1983. A decrease in cosmic ray flux was generally associated with the passage of an interaction region in which the magnetic field strength B was higher than that predicted by the spiral field model, B sub p. Several large enhancements in B/B sup p were associated with merged interaction regions which probably resulted from the interaction of two or more distinct flows. During the passage of interaction regions the cosmic ray intensity decreased at a rate proportional to (B/B sup p -1), and during the passage of rarefaction regions (where B/B sup p 1) the cosmic ray intensity increased at a constant rate. The general form of the cosmic ray intensity profile during this approx 13 month minicycle can be described by integrating these relations using the observed B(t). Latitudinal variations of the interaction regions and of the short-term cosmic ray variations were identified

    Single spacecraft identification of the bow shock orientation and speed: A comparison between different methods

    Get PDF
    We examine 33 bow shock crossings by IMP8 and compare different methods to calculate the bow shock normal direction and speed using single spacecraft measurements. We find that the mixed equation by Abraham-Shrauner combined with the mass flux conservation equation and the minimum-variance technique applied to a limited set of the Rankine-Hugoniot conservation equations give very similar results that are in good agreement with theoretical predictions. The solutions obtained by the velocity coplanarity theorem are reliable only for nearly perpendicular shocks, while poor results are obtained for such cases from the magnetic coplanarity theorem. We also suggest that in some cases the time resolution of plasma measurements (about 60 s) may be too low to resolve the density behaviour close to the bow shock and to allow definite evaluation of the shock parameters

    IMP 7 (Explorer 47) trajectory, September 26, 1972 to September 25, 1978

    Get PDF
    The trajectory plots for IMP 7 (Explorer 47) are contained. For each orbit the trajectory is shown in five panels on two pages; each panel is a different representation or projection. The trajectory parameters were obtained from the multi-coordinate ephemeris (MCE) tapes supplied to IMP experimenters by the IMP project. The plots on the right hand pages use a geocentric, solar-ecliptic coordinate system. Distances are in units of earth radii. The plots on the left hand pages use geocentric, solar magnetospheric coordinates with distances in earth radii

    Interplanetary flow systems associated with cosmic ray modulation in 1977 - 1980

    Get PDF
    The hydromagnetic flow configurations associated with cosmic ray modulation in 1977 to 1980 were determined using solar wind plasma and magnetic field data from Voyagers 1 and 2 and Helios 1. The modulation was related to two types of large scale systems of flows: one containing a number of transients such as shocks, post shock flows and magnetic clouds; the other consisting primarily of a series of quasi-stationary flows following interaction regions containing a stream interface and often bounded by a forward reverse shock pair. Each of the three major episodes of cosmic ray modulation was characterized by the passage of the system of transient flows. Plateaus in the cosmic ray intensity time profile were associated with the passage of systems of corotating streams
    corecore