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Abstract

When Voyager 2 was near 11 AU, the counting rate of nuclei N 75
MeV/nucleon decreased during the interval from July, 1982 to November,

1982, and it increased thereafter until August, 1983. The counting rate

fluctuated within this I'minicycle" with short term decreases lasting 1 to 4

days and recoveries lasting several days. A decrease in cosmic ray flux

was generally associated with the passage of an "interaction region" in

which the magnetic field strength B was higher than that predicted by the

spiral field model, Bp . Several large enhancements in B/Bp were associated

with "merged interaction regions" which probably resulted from the inter-

action of two or more distinct flows. During the passage of interaction

regions the cosmic ray intensity decreased at a rate proportional to

(B/Bp -1), and during the passage of rarefaction regions (where B/B p < 1)

the cosmic ray intensity increased at a constant rate. The general form of

the cosmic ray intensity profile during this s 13 month I'minicycle" can be

described by integrating these relations using the observed B(t), and it

can be understood in terms of the sizes and separations of interaction

regions. Latitudinal variations of the interaction regions and of the

short-term cosmic ray variations were identified by comparing Voyager 2

observations with Voyager 1 observations made at higher latitudes O V to
200 ). The interaction regions were turbulent, with an f-5/3  spectrum from

at least 3 x 10-4 Hz to f  0 to 2) x 10-6 Hz. A break in the spectrum at
f  corresponds to the characteristic width of the interaction regions, and

it represents a "stirring scale" for the solar wind. The interaction

regions, including merged interaction regions, may be viewed as "turbulent

boundary layers" which grow in size with increasing distance from the sun.

They act as barriers which impede the net flow of cosmic rays toward the

sun.
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1. Introduction

At 1 AU, temporal variations in cosmic ray intensity on a scale of the

order of days are related to the passage of stationary "corotating streams"

and non-stationary "transient flows" (see, e.g., the reviews, by Lockwood,

1971; Rao, 1972; Fisk, 1980, and Burlaga, 1983b). For both types of flows

there is a strong correlation between the cosmic ray counting rate C and

the strength of the interplanetary magnetic field B: C decreases when a

region of enhanced B moves past a spacecraft (Barouch and Burlaga, 1975;

Duggal et al., 1983). Regions of enhanced magnetic field were classified

by Burlaga and King (1979) as corotating interaction regions (which occur

ahead of corotating streams), post-shock flows (including both sheath flows

and e,jecta), and "cold magnetic field strength enhancements" (which include

magnetic clouds). Collectively they are referred to as "interaction

regions" (Burlaga and Cgilvie, 1970). The largest decreases in cosmic ray

intensity, Forbush decreases, are usually associated with shocks and

post-shock flows. Long-lasting Forbush decreases are sometimes observed at

1 AU (Lockwood, 1958, 1960, 1971) and these are related to the passage of a

series of shock-associated transient flows (Barouch and Burlaga, 1975).

The 11-year variation in C tends to occur in a series of steps followed

by plateaus of nearly constant cosmic ray intensity (Morrison, 1956;

Lockwood, 1960; McDonald et al., 1981a; and Webber and Lockwood, 1981,

McKibben et al., 1982; and Filius and Axford, 1985). McDonald at al.

(1981a,b) showed that when solar activity is increasing the steps in C are

observed near the sun first and farther from the sun later, indicating that

the agent which produces the steps propagates away from the sun. Burlaga

at al. 0 984a) showed that near 1 AU the broad steps and plateaus are
associated with two different kinds of flow systems. Plateaus in C are

observed during the passage of systems of corotating streams and

interaction regions, which are distinct, well-ordered flows. Broad steps

in C are associated with the passage of a system of transient or mixed

flows, which tend to be a complicated set of flows containing shocks

together with irregular magnetic fields.
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Interplanetary streams and interaction regions are known to evolve

dramatically with distance. Isolated streams may "damp out" by momentum

exchange with surrounding flows (Holzer, 1979), and they may be decelerated 	
f

by reverse shocks (Hundhausen, 1973a,b; Gosling at al., 1976). Isolated 	 +I"

interaction regions may grow in size and amplitude with increasing distance

from the sun (Hundhausen, 1972; Whang 1980, 1984; Pizzo, 1981, 1983), and	 I

neighboring interaction regions may coalesce to form larger "merged

interaction regions" as slow streams are entrained by faster streams

(Burlaga et al., 1983, 1984a; Whang and Burlaga, 1985). These processes 	 i

are discussed in greater detail in the review by Burlaga (1985). The net

result is that, with increasing distance from the sun, interaction regions 	 P^

become a more dominant morphological and dynamical feature, while streams

become less important. Transient and corotating streams and interaction

regions can interact with one another to produce new kinds of flows and

interaction regions in which memory of the source is lost (Burlaga et al.,

1983). In this case the distinction between corotating flows and transient{{}H''t

flows cannot be made and one must speak of merged interaction regions }}^

rather than eororating interaction regions, post—shock enhancements,

e,jecta, etc.

Since interplanetary flows and interaction regions can change

qualitatively with increasing distance R from the sun, their relation to

the cosmic ray intensity might also change. In this paper we investigate

the relations between C, B and the flow speed V in the region between m 10

AU and s 15 AU, using data obtained by Voyagers 1 and 2 from June 1, 1982

to August 1, 1983. A strong correlation is found between changes in C and
r

i the magnetic field strength: The cosmic ray intensity decreases when an

interaction region or merged interaction region movesg	 g	 g	 past the spacecraft,
i

and it increases when a rarefaction region moves by. Thus, the long—term

variation in C depends on the field strength in the interaction regions and

on the separation of interaction regions. This is discussed quantitatively

in Sections 2 and 4. The nature of the interaction regions at these

distances (10-15 AU) is discussed in Section 3.

C
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2. Relation between Cosmic Ray Intensity and Magnetic Field Strength

In this section we shall discuss Voyager 2 observations made near the

heliographic equatorial plane, between the latitudes of —3.2 0 and —1.60,

from 10.1 AU to 12.2 AU, The intensity of cosmic rays > 75 MeV/nucleon,

measured by the Cal Tech/University of New Hampshire/Goddard Space Flight

Center experiment in the interval June 11, 1982, to August 1, 1983, is

shown it Figures 1 and 2. The magnetic field strength B was measured by
the GSFC magnetometer (N. Ness, Principal Investigator). The effect of the

large scale gradient in magnetic field strength (Burlaga at al., 1984b) is

removed by using the ratio B/Bp , where the value Bp is the spiral field

strength (Parker, 1963) with a coefficient determined by Burlaga at a1.,

(1984b) from a fit to the data to be B p = 4.75 (1 + R 2 ) 1/2/R2 . The ratio

B/Bp is related to the variation 6B about an average value Bp , by the

equation B/Bp = (Bp + 6B)/Bp = 1 + 6B/Bp . Observations of B/Bp for the

interval under consideration are shown in Figures 1 and 2. In the bottom

panels of Figures 1 and 2 we show the bulk speed V of the solar wind

plasma, measured by the experiment of Bridge et al. (1977). It has been

observed that under some conditions V is related to C near 1 AU (see, e.g.,

the review by Burlaga, 1983b).

The magnetic field strength profiles B/Bp (t) in Figures 1 and 2 show	 EI

that the solar wind near 10 AU can be partitioned into two types of

regions: interaction regions, where B/Bp > 1; and rarefaction regions,

where B/Bp 0. The average Pield strength B/Bp = 1 is observed only

infrequently. Near 1 AU, such a clear division nannot always be made, and

it is customary to distinguish between regions in which the speed is low

and streams in which V is significantly higher than average for s (2-6)

days. However, at large distances from the sun, distinct streams cannot

always be seen, owing to the erosion and damping isolated flows and to the

Interaction of neighboring streams. The absence of well—defined streams in

the region and interval under consideration is evident from Figures 1 and

2. Thus, we shall consider the relation between the cosmic ray intensity

and the interaction regions and rarefaction regions defined by B/Bp.
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Comparing the counting rate of cosmic rays with the large—scale

fluctuations in magnetic field strength given by B/B p in Figures 1 and 2,

one can see the following basic relations: 1) A decrease in counting rate

over an interval of s 2 to 4 days is usually related to the passage of an

intei_.ition region. 2) An increase in counting rate over an interval of

several days is related to the passage of a rarefaction region. 3) The

magnitude of a decrease in counting rate tends to be greater for

interaction regions with larger B/Bp . 4) The rate of increase in counting

rate during the passage of an interaction region is approximately a

constant, independent of the magnitude of B/Bp.

A merged—interaction region with exceptionally strong magnetic fields,

labeled D in Figure 1, produced a major "step" in the cosmic ray intensity

profile, near August 1, 1982. This was followed by a "plateau" in the

cosmic ray intensity from August 1982 to mid—February, 1983. During this	 j

interval, 11 interaction regions (E through 0 in Figures 1 and 2) produced

decreases in the cosmic ray intensity, and each interaction region was

followed by a rarefaction region in which the cosmic ray intensity

increased at a fixed rate. The interaction regions were closely spaced,

i.e., the duration of the rarefaction regions was relatively short, so

there was relatively little time available for recovery of the cosmic ray

intensity in this interval.. The net effect of the interaction regions 	 j

balanced that of the rarefaction regions, resulting in a "plateau') in

cosmic ray intensity, with fluctuations related to the magnitude of B in

the interaction regions. In the interval from February, 1983 to June, 	
1

1983, the cosmic ray intensity increased, because the interaction regions

were widely spaced, allowing significant time for recovery of the cosmic 	 i
i

ray intensity. In other words, the effect of the rarefaction regions

outweighed the effect of the interaction regions, resulting in a net

increase in the cosmic ray intensity in this interval.

It was noted in our discussion of Figures 1 and 2 that the decrease in 	 j

cosmic ray intensity is generally larger for interaction regions with

stronger B/Bp . Let us denote the difference between the maximum counting

rate at the beginning of a cosmic ray intensity decrease and the minimum

counting rate at the end of a cosmic ray decrease by AC. This value of AC
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was determined for each of the significant decreases in cosmic ray

intensity in Figures 1 and 2, and the maximum value of B/B p in the

corresponding interaction region was also determined in each case. A plot

of AC versus (B/Bp)max is given in Figure 3, which shows that there is

indeed a tendency for AC to be larger for interaction regions with stronger

fields, but there is significant scatter of the observations about the

straight line. The scatter suggests that cosmic ray modulation is not

produced directly by (B/Bp) max , and it indicates that a linear relation

between AC and B/Bp is at best a first approximation to a more accurate

model. Nevertheless, Figure 3 shows that the decrease in cosmic ray

intensity does depend on strength of the magnetic fields in the interaction

regions, if only indirectly.

The rate at which the cosmic ray intensity increases during the passage

of rarefaction regions appears to be approximately a constant, independent

of the nature and °strength" of the preceding interaction regions. The

extent to which this is true can be seen in Figures 1 and 2 by comparing

the straight line segments drawn through the cosmic ray measurements (all

of which have the same slope) with the observations. The recovery rate for

these particles > 75 MeV/nucleon is R = 0.003 (counts/sec)/day. Thus, for

the recovery we can write dC/dt = R.

It is significant that the cosmic ray intensity in Figures 1 and 2 is

generally either increasing or decreasing, seldom remaining constant for

more than a few days. Similarly, B/Bp is generally either > 1 or < 1, 	 j

seldom remaining s 1 for more than a few days. The counting rate versus

time, C(t), appears to be the net result of decreases produced by

interaction regions and increases occurring during the passage of

rarefaction regions. The relations between changes in counting rate and

the magnetic field strength can be expressed by the equations:

dC
1)	 — _ —D ( B/ Bp	 p1 )	 when B/ B > 1

dt

7



k
u'

u

i

d 
2)	 — = R	 when B/Bp < 1,

dt

where D and R are constants. Equations 1 and 2 express the results derived

above: 1) the cosmic ray intensity decreases when an interaction region

moves by, and the size of the decrease depends on the strength of the

magnetic field; 2) the cosmic ray intensity increases at a constant rate

during the passage of an rarefaction region.

Given B/Bp ( t) and same initial value of C, it is possible to integrate

equations 1 and 2 to obtain a cosmic ray intensity profile C(t). The

result of this integration, obtained using C(t = 0) = 0.47 counts/see, D =

0.004 (counts/sec/day) and the magnetic field data from Figures 1 and 2, is

shown in the lower panel of Figure 4. The corresponding observations for

the interval August 11, 1982 to July 1, 1983, from Figures 1 and 2, are

shown in the upper panel of Figure 4. In general, there is good agreement

between the results of the model and the observation. There are some

differences in detail, the most significant being the size of the decreases

in December, 1982 and January, 1983, which suggest that events associated

with high speed streams could be modeled more accurately. The important

result, however is that variations with a scale of six months to one year,

can be modeled as the result of the effects of a series of events with time

scales of the order of days. The modulation near 11 AU is the result of a

delicate balance between decreases in intensity caused by interaction

regions and increases in intensity associated with rarefaction regions.

3. Merged Interaction Regions

It was shown above that decreases in cosmic ray intensity near 11 AU

are related to the passage of interaction regions. The largest decreases

were related to the passage of merged interaction regions, and it is of

interest to examine some merged interaction regions in more detail in order

to better understand their structure, to see how they can vary with

latitude, and to look for characteristics that might be responsible for the

scattering of cosmic rays. Since we cannot discuss all of the interaction

8
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regions in Figures 1 and 2, three were selected which are representative of

large merged interaction regions.

Merged corotating interaction region.

Event V is shown in Figure 5, whtere d and a are respectively the

elevation and azim t 1th angles of the magnetic field in heliographic

coordinates (see Burlaga, 1985), N/N o is the density relative to

No (cm 3 ) = 6 x [R(AU)l -2 corresponding to a density of No = 6

particles/cm 3 at 1 AU, T  is the proton temperature, and V is the bulk

speed. The vertical lines show two forward shocks (F 1 and F2) and one

reverse shock M. Shock F 1 occurred in a data gap, and its existence is

inferred on the basis of the observation of an increase in B, N, T  and V

across the gap, which is consistent with the passage of a forward fast

shock. This existence of this shock as well as F 2 and R is supported by

the observation of f1 spikes" in the intensity of 0.5 — 1.4 MeV protons at

the indicated times which are typical of shock—accelerated particles (Gold

and Krimigis, private communication). The spectra of these spikes are

flat, which is taken as an indication that the shocks are probably

corotating. Thus, it is likely that this merged interaction region was

produced by the interaction of two corotating streams.

Note that three well—defined, magnetic sectors are seen in the merged

interaction region in Figure 5. In an ordinary interaction region, no more

than two sector polarities are observed. The negative sector from June 15

to June 20, 1983, in which the magnetic direction is sunward, is probably

in the remnant of a corotating stream that produced F 2 , and R. The

boundary of this sector on June 15 is associated with a drop in N and an

increase in Tp , which might represent the remnant of a stream interface

marking the front of the stream. The earlier positive sector from June 11

to June 15 is probably in the remnant of a corotating stream that produced

F 1 and the boundary of this sector on June 11 might represent the front of

the stream. Shock F 1 has propagated into the negative polarity sector

preceding this stream, from June 6 to June 11. It is significant that the

interaction has not destroyed or even significantly disturbed the sector

pattern.

9
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The effect of this merged interaction on the cosmic ray intensity is

shown at the top of Figure 5 and in Figure 2. There was possibl y a small

decrease in cosmic ray intensity following the arrival of the shook F 1 and

the eorotating interaction region of the first stream. A moderate decrease

in cosmic ray intensity followed shock F 2 , corresponding to the passage of

doubly shocked plasma where the interaction region of the second eorotating
i

stream overlapped with that of the first stream. The moderate size of the

jnet decrease in counting rate is related to the moderate increase in

magnetic field strength in this merged interaction region ((B/Bp)max s 3)

}	 in agreement with Figure 3. The time profile of cosmic ray intensity shown

in Figure 3, which was observed near 11 AU, is analogous to that of a

3	
"eorotating Forbush deereaset' seen at 12 AU (Burlaga, 1983), the difference

being that the 2-step decrease observed at 11 AU is due to a emerged

eorotating interaction region" while at 1 AU the decrease is usually

associated with an isolate! interaction region.

Transient stream overtaking a eorotating interaction region.

Event 0 in Figure 6 shows a very large, fast compound stream. Fast

streams are rare at distances N 10 AU, and they are likely to be in part

the result of a violent transient disturbance on the sun. The complex

variations in the magnetic field direction shown in this Figure also

indicate a complex interaction of flows which include one or more large

transient streams. (It is difficult to sort out the separate flows and

interactions in this case with only data from Voyager 2. One needs data

from other spacecraft at smaller distances and an MHD model of streams in

order to inter i eet the profiles in Figure 6.)

The narrow region with very strong fields on January 16 and 17, 1983,

is a result of the interaction of a fast forward shock F 2 with a fast

reverse shock R. (Shock F 2 was observed on hour 6 on January 16, and R

occurred in a data gap between ^iurs 2 and 14 on January 17.) The

likelihood of such interactions in the outer heliosphere has been discussed

on theoretical grounds by several authors, and evidence for such an

interaction involving eorotating shocks has been published (see Burlaga,

10
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1985). This case is notable because the shock F 2 is probably a transient

i	 and because of the proximity of F
2
 and R.

The effect of the complex interaction region in Figure 6 on the cosmic

ray intensity is shown at the top of Figure 6 and in Figure 2. The

counting rate dropped abruptly by a relatively large amount when the strong

fields assuaiated with the doubly shocked plasma between F 2 and R moved

past the spacecraft on January 16, and it remained low where the speed was

high. The recovery occurred in the interval where the speed and magnetic

field strength were decreasing. Note that the recovery rate is comparable

to that following the other interaction regions in Figures 1 and 2. There

is no indication that the recovery time following a transient interaction

region is unusually long at this distance, in contrast to the suggestion of 	 t

Van Allen (1:)79).

	

	 1

I
Magnetic cloud overtaking a corotating interaction region.

A notable feature of event D, shown in Figure 7, is the magnetic cloud
1

on August 4-8, 1982, which is identified on the basis of the south to north

variation of the magnetic field direction, the relatively high magnetic

field strength, the low density and the low temperature (see Burlaga, 1985

and Burlaga and Behannon (1982) for references to earlier observations of

magnetic clouds). The high field strengths in the cloud are presumed to be

partly the result of injection of magnetic flux at the sun. It is notable

that a magnetic cloud evidently can remain stable out to o 11 AU (assuming 	 }

that it originated at the sun), after a propagation time of approximately a

month. Burlaga et al. (1981) and Burlaga and Behannon (1982) suggested
	

I

that the front and rear of a magnetic cloud expand into the ambient median 	 {

at a rate ox's VA/2 where VA is the ambient Alfven speed. Assuming V A/V N

0.1, V N 500 km1s and a transit time past a s pacecraft of 1 AU of s 1 day, 	
i

one expects the transit time past a spacecraft at s 11 AU to be N 4 days,

in good agreement with the observed duration of the magnetic cloud in

Figure 7. This is additional evidence for the expansion of magnetic

clouds.

s
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A transient shock (T) probably passed the spacecraft during a data gap

on August 1. Its presence is inferred from the increase in P,, N, T and V

seen in Figure 7, and from the observation of a 11 spike ll observed in the

intensity of 0.5 - 1.4 MeV protons (Gold and Krimigis, private

communication) which is generally indicative of shock-accelerated

particles. The shook is identified as a transient shock (as distinct front

a corotating shook) on the basis of the spectrum of the energetic

particles. We tentatively associate this shock with the magnetic cloud,

i.e., we assume that near the sun it was driven by the magnetic cloud, but

it was probably detached from the magnetic cloud when observed by Voyager

2.

A stream-stream interface (I) (Burlaga, 1974), which is indicative of a

corotating interaction region (Burlaga, 1985), was observed by Voyager 2

near the end of August 2, as indicated by the maximum in B, the drop in N,
f

the increase in T and the increase in V. A forward shock (F) on July 31

and a reverse shock R on July 8, which were identified by the changes in B,

N, T and V and by peaks in the (1-10 MeV) particles, probably represent the 	 i

oot0r;,'';,ng forward and reverse shocks associated with the corotating

isi ,t.eraction region that is marked by the interface. If this is so, then

shock T must have passed the stream interface and moved nearly through the 	 f

corotating interaction region, which would explain why the magnetic field
I!

strength at the interface I is significantly higher than one expects for an

isolated corotating interaction region (Burlaga and King, 1979), because 	 ij{

the shock would have compressed the field by a factor of 2 or so. The

reverse shock must have passed through the magnetic cloud, compressing the

magnetic fields in it, which would explain for the relatively high field
!a

strength in the magnetic cloud at this large distance from the oun. Thus

the unusually large strength of the magnetic field and the duration of the

strong field region in event D, as well as the variations in N, T, V, d and 	 1

X, can be understood as the result of the interaction of a magnetic cloud

with a corotating stream and interaction region.

The shocks F and T did not produce a large decrease in cosmic ray !E

intensity (see the top panel of Figure 7 and in Figure 1), but the cosmic4

ray intensity did decrease significantly during the passage of the t'shocked

12
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interaction region" following the interface I. The intensity did not

decrease further when the magnetic cloud moved by, even though the field

strength was relatively high in the cloud. This suggests that the

modulation is related to small—scale turbulent fluctuations in the magnetic

field, which are large in "merged interaction regions" but small in

magnetic clouds, rather than to the magnetic field strength or large—scale

gradients in B. Thus, there are exceptions to Equation 1, and it would be

desirable in future studies to replace this approximate relation by one

d 
which relates — directly to the fluctuations in B.

dt

The recovery in cosmic ray intensity following the passage of the

merged interaction is of intereat in regard to the issue of whether or not
I

the recovery time of a Forbush decrease at large distances is unusually

long (Van Allen, 1979). Note that the recovery rate during the passage of

	

	 !
i

the rarefaction region which followed the merged interaction region was

essential) the same as that	 y q	 g y	 given b Equation 2, which would not give an

unusually long recovery time. On the other hand, the cosmic ray intensity

did not recover to the value preceding the merged interaction region until 	 f

seven months later. In our view, the long interval with low cosmic ray 	 II	 i

intensity is due to the passage of many interaction regions in close 	 (I
S

succession, rather than a result of the slow recovery of a Forbush decrease

following a shoois. The cosmic ray intensity profile from July, 1982 to

April, 1983 i:s more nearly related to that of a "long—lasting Forbush

decrease" at 1 AU (Barouch and Burlaga, 1975) than to a single "Forbush

decrease" at 1 AU.	 4

	

4. Latitude Variations of the Magnetic Field and Cosmic Ray Modulation 	 I

The observations discussed above were made by Voyager 2 at

latitudes between —3.20 and —1.6 0 as the spacecraft moved from 10.1 AU to

12.2 AU. At the same time, observations of magnetic fields and energetic

particles were being made by Voyager 1 at higher latitudes, from 13.9 0 on

July 1, 1982, and 19.8 0 on July 1, 1983, as the spacecraft moved from 13.5

AU to 16.7 AU, respectively. There are no plasma measurements from Voyager

1. these date enable us to answer the following questions: Was the

13



magnetic field profile the same at those high latitudes as it was near the

ecliptic? Was the relation between cosmic ray intensity and magnetic field

strength the same at Voyager 1 as it was at Voyager 2?

Observations of the magnetic field strength measured by Voyager 1 from

July 1, 1982 to July 1, 1983, are shown in Figures 8 and 9. The magnetic

field strength measured by Voyager 2 is shown again, at the bottom of

Figures 8 and 9 so that it can be compared directly with the Voyager 1

data. Note that the time axis for the Voyager 2 data has been slipped in
,

time to partly compensate for the transit time delay of material moving

from Voyager 2 to Voyager 1. Since the latitudinal structure of the solar

wind is not known, one cannot compute a meaningful °corotatlon delay". The

shifts used in Figures 8 and 9 ( different in each case) were determined

subjectively to give the best alignment between the magnetic field profiles

from the two spacecraft.

In the interval from July 1 to December 1, 1982, (Figure 8) there was a

poor correlation between the magnetic field strength profiles observed by

Voyagers 1 and 2. The differences cannot be eliminated by changing the

delay time or even by using a variable delay, and such large differences 	 f

are not likely to be the result of radial evolution of the flows. Thus,

there were probably large latitudinal gradients in magnetic field

structures with a scale of the order of 1-2 AU, during this pa;•ticular

interval.

In the interval from December 1, 1982 to August 1, 1983, (Figure 9)

when Voyagers 1 and 2 were farther apart in both latitude and radius, the

correlation between the magnetic field strength profile; was better than in

Figure 8. There are significant differences in the size and shape of the

strong-field regions, indicating latitudinal gradient in B. Nevertheless

several of the major interaction regions can be seen at both latitudes, the

difference in latitude being 17 0 to 18° in the interval considered.

A better understanding of the latitudinal structure of interactions can

be derived by considering solar observations, more detailed data from

Voyagers 1 and 2, data from other spacecraft, and MHD models, but we shall 	 (^
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not digress to discuss this topic. For our purpose, the important point is

that Voyagers 1 and 2 observed different magnetic field profiles. We may

ask whether the cosmic ray profiles differed correspondingly and whether

the model derived from Voyager 2 data (Equations 1 and 2) is applicable to

the Voyager 1 data.

The energetic particle observations (> 75 MeV/nucleon) from Voyager 1

for the interval August 1, 1982 to August 1, 1983, are shown at the top of

Figures 8 and 9. In general, the long—term intensity versus time relation

is very similar to that observed by Voyager 2 (compare with Figures 1 and

2). there was a large, abrupt decrease in August, 1982 and the intensity

remained low for the most part through November, 1982; there were two large

decreases in January and February, 1983; and there was a recovery from

February to August, 1983. Figures 8 and 9 show that the large decreases in

cosmic ray intensity are related to the passage of interaction regions, and

Figure 3 shows that the size of each decrease AC is roughly proportional to

the maximum magnetic field strength in the corresponding interaction

region, as observed by Voyager 2. The counting rate at Voyager 1 increased

at a constant rate during the passage of rarefaction regions, again in

agreement with the Voyager 2 r<-sults. In general, the cosmic ray

variations and the relation between cosmic ray intensity and magnetic field

strength were similar at Voyagers 1 and 2, despite the separation in

latitude.

The short—term variations in cosmic ray intensity (of the order of 	 it
several days) were significantly different at Voyagers 1 and 2, especially

from August to December 1982. Ihis is associated with the corresponding

differences in magnetic field strength profiles at different latitudes, as

discussed earlier. It is of interest to determine whether the Voyager 1

cosmic ray counting rate can be derived from the corresponding magnetic

field strength profiles using Equations 1 and 2, which were derived from

Voyager 2 data. Using G(t = 0) = 0.47 counts/see, R = 0.003 counts/sec/day

and D = 0.005 (counts/sec/day, the equations were integrated to give the

result at the bottom of Figure 10. This model curve agrees well with the

observations reproduced in the top of Figure 10, except for some details.

Thus, again the long term variations in cosmic ray intensity, with a time
r
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i

E	 scale of several months, can be reproduced as the result of a balances

d	 between decreases due to interaction regions and increases related to the

passage of rarefaction regions.	 The cosmic ray intensity remained low when

there were large closely spaced interaction regions and it increased when

there were smaller more widely spaced interaction regions.

5.	 Magnetic Field Spectra and Turbulence

The modulation process described above considers that changes in cosmic
,

ray intensity are related to specific features in the interplanetary LI

magnetic field.	 On the other hand, Voyager	 1 and 2 observations in the

interval July to December,	 1982 show that essentially the same long--term (s j'
r	

6 months) changes in cosmic ray intensity can be produced by distinctly
^^fu+,	 different magnetic field configurations, suggesting that there are some

general features of flow systems that are important, as discussed by

I

}^f

Burlaga et al. (1984a)	 and Burlaga and Goldstein (1984).	 Goldstein et al. 'F

(1984) have identified some differences in the magnetic field spectra of

corotatin	 and transient systems observed	 F AU	 and the	 suggestedB	 Y	 S	 ,	 y 	 that 1

transient and mixed systems are turbulent and that this turbulence is

related to the cosmic ray modulation.	 We must now ask how this view, which i
is basically statistical, can be reconciled with the deterministic results

discussed above. H(

Let us compare spectra of the magnetic fields observed by Voyagers 1

and 2 for an interval containing many transient flows with the spectra for

an interval containing mostly corotatin flows. We considerg	 Y	 g	 power spectral

density of fluctuations in the components of B (trace of the power spectral

matrix), the magnitude of B, and the magnetic helicity times frequency.

The spectra were computed from one hour average data using the

Blaclanan—Tukey method with 20 degrees of freedom, without detrending or

filtering the data. Details of this approach are given in Matthaeus and

Goldstein (1982). Figure 11 shows spectra computed from Voyager 2 data for

the intervals June 1 to November 1, 1982 (transient flows) and March 1 to

August 1, 1983 (corotating flows). Figure 12 shows spectra computed from 	 1
Voyager 1 data for the corresponding intervals July 1 to November 11, 1982 	 ^1

and March 11 to August 1, 1983, respectively.
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The spectra of fluctuations in the components of B are given by the

upper curves of Figures 11 and 12, and the spectra of fluctuations in the

magnitude of B are given by the lower curves. Positive values of magnetic

helicity are denoted as circles, negative values as triangles. The plot

shows f m(f) where H (f) is the reduced magnetic helicity spectrum as

defined by Goldstein et al. (1982). Assuming that plasma is convected past

the spacecraft at the mean solar wind speed in the interval, V, the

frequency f  corresponding to the correlation length L, is f  = V/L, and

this is shown by the arrows in Figures 11 and 12. The basic result is that

in all of the intervals the spectra have the form C5/3 over two decades of

frequency for f > fa . The coefficient —5/3 implies that both corotating

and transient flows are representative of fully developed turbulence (see

the review by Montgomery, 1983).

The f-5/3  spectrum begins near fc , which is m (1 to 2) x 10-
6
 Hz, or

f 
_1 

r (5 to 10) days. This is approximately equal to the widths of the

interaction regions, consistent with the idea (Goldstein et al., 1984;

Burlaga and Goldstein, 1984); that the interaction regions are a source of

turbulence and that the width of an interaction region represents a

"stirring scale." An interaction region can be viewed as a "turbulent

boundary layer" whose width increases with distance from the sun.

The shocks that bound an interaction region are one possible source of

turbulence, and one expects f  to decrease as the shocks move apart. At a

distance > 25 AU, where all of the wind has been shocked at least once,

(Burlaga, 1983a), one expects the wind to be turbulent everywhere, at all

frequencies 
s 

(26 days) -1 . At 11 AU, however, the turbulence should be

"patchy" in this view, being confined to the interaction regions but not.to

the rarefaction regions.

The nature of fluctuations in compression ane rarefaction regions at

different distances from the sun is a topic in itself. Here we shall

discuss one interaction region observed by Voyager 2 (June 13, hour 0427 to

June 14, hour 0821, 1983 and the rarefaction region following it (June 17,

hour 0401 to 1553, 1983), which serve to illustrate the basic

17
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characteristics of corotating interaction regions and rarefaction regions

near 11 AU. She magnetic field spectra, computed as described above using

96 sec averages, are shown in Figures 13a and 13b, respectively. The power

levels in the interaction region are more than an order of magnitude larger

than those in the rarefaction region. Thus, spectra for an interval

containing both the interaction region and the rarefaction region would be

dominated by power from the interaction region, as asserted above. A f-5/3

,z
spectrum is observed above 3 x 10-4 Hz in fluctuations of both the

components and magnitude of B in the interaction region, whereas a f 1

spectrum is observed above v, 5.3 x 10-4 Hz in the rarefaction region. Thus,

the interaction region is turbulent, but the rarefaction region is not.

Assuming that these results are general for observations near 10 AU, the

spectra at f >1-2 x 10 
6 

Hz in Figures 11 and 12 should be understood as

spectra of turbulence in interaction regions near 10 AU.

The spectral results are consistent with the model presented above.

Decreases in cosmic ray intensity are related to the passage of interaction

regions, and the spectra show that these interaction regions are turbulent,

in the sense that they have a Kolmogoroff spectrum. Thus, the decreases in

cosmic ray intensity are related to large local "patches" of turbulence in

the interplanetary magnetic field. We have not determined whether

fluctuations in the direction of the field, the magnitude of the field or

both, are responsible for the scattering. The recovery in intensity near

10 AU occurs during the passage of rarefaction regions when the level of

fluctuations is low and the spectra of the magnetic field fluctuations are

not representative of fully developed turbulence.

6. Summary

It was shown that the modulation of 
m
 75 MeV/nucleon particles between

10.1 AU and 16.7 AU, from June 1, 1982 to August 1, 1983, was related to

the passage of interaction regions and rarefaction regions. When a

turbulent interaction region moved past the spacecraft, the cosmic ray

intensity decreased by an amount proportional to the strength of the

magnetic field in the interaction region, and when a rarefaction region

moved past the spacecraft the cosmic ray intensity increased at a constant
N
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rate. The cosmic ray intensity versus time over this one—year time

interval was the result of a balance between these competing effects

operating on a scale of the order of several days.

Three examples of merged interaction regions (MIR's) were described.

Although a definitive analysis requires observations closer to the sun and

MHD modeling, plausible models for nature of these interaction regions

could be derived from the Voyager observations. One of the MIR's was

probably the result of a fast corotating stream overtaking a slower

corotating stream, and it produced a decrease in the cosmic ray intensity

which is the analog of a "corotating Forbush decrease" at 1 AU. Two

corotating forward fast shocks followed by one corotating reverse shock
1

were observed, and strong magnetic fields were produced as the shock from

the second stream moved into the interaction region of the preceding flow.

Three sectors were identified in the merged interacton region, indicating
F

that interactions among corotating streams do not necessarily disrupt the 	 t

sector structure near 10 AU. A second MIR was probably the result of a
t

fast transient stream overtaking a corotating interaction region. Strong

magnetic fields were produced as the transient shook moved through the 	 1

corotating reverse shock and into the corotating interaction, i.e., the	 j

field between these two shocks was probably compressed first by stream

steepening, then by the corotating reverse fast shock, and again by the

transient transient fast forward shock. The merged interaction region was

more effective in modulating cosmic rays than the isolated corotating

shock. The magnetic field direction in this case was highly variable, and

a clear sector structure was not observed. A third MIR was probably the

result of a magnetic cloud overtaking a corotating interaction region which

was bounded in front by a corotating fast forward shock. Again a transient

fast forward shock, presumably originally driven by the magnetic clout,

propagated into the corotating interaction, producing very strong magnetic

fields. The corotating reverse shock was observed behind the magnetic

cloud, suggesting that it propagated through the cloud and compressed the

normally strong magnetic fields of a magnetic cloud. The observation of a

magnetic cloud near 11 AU is itself interesting, for it provides further

evidence for the stability of magnetic clouds and for radial expansion of

magnetic clouds at a rate of the order of the Alfven speed. The double

19	 0	 11



shocked magnetic fields were more effective in modulating cosmic rays than

either the corotating shock or the magnetic cloud.

Interaction regions and merged interaction regions appear to be a local

source of turbulence in the outer heliosphere, and the width of an

I	 interaction region is related to the correlation length, which gives the

lower limit of the inertial range of the turbulence. As the interaction

regions expand in size with increasing distance from the sun, the lower

limit of the f-5/3 dependence of the spectral energy density decreases.
6

This turbulence is probably the cause of the decreases in the cosmic ray

intensity near 10 AU, although the specific scattering mechanism was not 	 ^^q

1!	identified in this study.

The long-term modulation is related to the strength of the magnetic

field in the interaction regions (which is presumably related to the level

of turbulence) and to the separation of interaction regions. When systems

of corotating interaction regions are present, the separation between

interaction regions is relatively large, and recovery of cosmic ray

intensity is the dominant effect. When transients are present, the

separation between interaction regions is smaller and the amplitude is

larger, so the cosmic ray intensity tends to decrease or remain low.

Significant differences in the magnetic field strength profiles were

observed by spacecraft separated in latitude by o 17 0 in one 5-month

interval, but not in a neighboring 6-month interval. Corotating 	 1

interaction regions were more prominent in the latter interval, and they

presumably related to streams and coronal holes extending from the ecliptic

to higher latitudes. Despite latitudinal differences in the magnetic field 	 i

i

strength profiles in the first interval, the cosmic ray intensity profile

wa: qualitatively the same at the two latitudes on a time scale of the

order of months. 'thus the long-term modulation appears to be related to

the statistical pattern of occurrence and strength of the interaction 	 i

regions, or to the "intermittency" of the turbulence ( Batchelor, 1970).

Corotating systems with order on a large scale and with relatively large

rarefaction regions near 10 AU, allow a recovery of cosmic ray intensity.

On the other hand, when the sun is more active over a suitable range of
Y
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latitudes and produces transient flows of smaller size in addition to

evolving corotating flows, the interaction regions are more closely spaced

and less regular. Even when individual flows do not extend over a wide

range of latitudes, the general nature of the flows may be the same over a

wide range of latitudes. These transient or mixed flow systems are

associated with a relatively low level of eoamie ray intensity.
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Figure Captions

Figure 1 Voyager 2 observations of the counting rate of nuclei >

75 MeV/nuoleon (top), magnetic field strength B relative

to the spiral field strength B p (middle), and bulk speed

(bottom) from June 1, 1982, to December 1, 1982.

Figure 2	 Same as Figure 1, for December 1, 1982 to August 1,

1983•

Figuro 3	 Decrease in touting rate AC corresponding to the passage

of an interaction region with maximun field strength

B/ B .
p

rigure A	 Voyager 2 observations of the counting rate of nuclei >

75 MeV/nucleon (top) reproduced from Figures 1 and 2,

and counting rate derived from Equations 1 and 2 using

the magnetic field strength given in Figures 1 and 2

(bottom).

Li ure 5	 A merged interaction which is probably the result of an

interaction region produced by a fast corotating stream

overtaking and merging with an interaction region

produced by a slower corotating stream.

Figure 6	 A merged interaction region which is possibly the result

of a transient flow overtaking a corotating interaction

region. Note the doubly shocked plasma between F 2 and

R, and the radial magnetic field in the low density

"wake" W of the transient stream.

Figure 7	 A merged interaction region which is probably the

result of a magnetic cloud interacting with a corotating

interaction region.
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Figure 8 Voyager 1 observations of the counting rate of nuclei >

75 MeV/nucleon ( top) and normalized magnetic field

strength (middle), together with Voyager 2 observations

of the normalized magnetic field strength ( bottom)

shifted in time to compensate for the propagation time

between the two spacecraft.	 The large difference

between the Voyager 1 and 2 magnetic field strength

profiles is the result of the latitudinal separation of

the spacecraft.	 Evidently, large latitudinal gradients

in magnetic field can exist.

j

Gigure 9 Same as Figure 8, for the period December	 1, 1982 to	
1

August 1,	 1983•	 The large merged corotating interaction

1regions and those associated with two very fast 	 j
F.

transient streams extend over a wide range of latitudes

in this case. j

Figure 10 Voyager 1 observations of the counting rate of nuclei >

75 MeV/nucleon ( top) and the counting rate derived from 	
{

Equations 1 and 2 using the magnetic field strength 	 i	 4

given in Figures 8 and 9.
Y

Figure 11 Spectra of fluctuations in the magnetic field direction

(upper curve in each 7anel), magnetic field strength

(lower curve in each panel), and magnetic helicity	 fl

(circles and triangles) derived from Voyager 2 data for

the "mixed flow system" from June 1 to November 1, 	 1982

(left) and for the corotating flow system from March 1
{

to August	 1,	 1983•

Figure 12 Same as Figure	 11 for the Voyager 1 data for the	 ^il
i

intervals July 1 to Nov !s.iber 11,	 1982 (left)	 and March

11 to August	 1,	 1983.
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Figure 13	 a. (left panel) Spectra (see Figure 11) for the merged

interaction region from June 13, hour 0427, to June 14,

hour 0821, 1983.

b. (right panel) Spectra for the rarefaction region from

June 17, hour 0401. to June 17, hour 1553, 1983.
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