29 research outputs found

    Huge power factor in p-type half-Heusler alloys NbFeSb and TaFeSb

    Get PDF
    NbFeSb is a promising thermoelectric material which according to experimental and theoretical studies exhibits a high power factor of up to 10 mW/(m.K^2) at room temperature and ZT of 1 at 1000 K. In all previous theoretical studies, κ_latt is calculated using simplified models, which ignore structural defects. In this work, we calculate κ_latt by solving the Boltzmann Transport Equation and subsequently including the contributions of grain boundaries, point defects and electron-phonon interaction. The results for κ_latt and ZT are in excellent agreement with experimental measurements. In addition, we investigate theoretically the thermoelectric properties of TaFeSb. The material has recently been synthesised experimentally, thus conrming the theoretical hypothesis for its stability. This encourages a full-scale computation of its thermoelectric performance.Our results show that TaFeSb is indeed an excellent thermoelectric material which has an unprecedentedly high power factor of 16 mW/(m.K^2) at room temperature and ZT of 1.5 at 1000 K

    Significant improvement of the Seebeck coefficient of Fe2VAl with antisite defects

    Get PDF
    In this work we present first principles study of the effect of stoichiometric pairs of antisite defects, V occupying Al site (VAl) and Al occupying V site (AlV), on the electronic structure and Seebeck coefficient of the Fe2VAlHeusler alloy. We show that introduction of these defects opens the bandgap of Fe2VAl, changing it from semi-metal to semiconductor, which results in an increase of the Seebeck coefficient for a range of doping concentrations and temperatures. We calculated Seebeck coefficients at different doping concentrations and temperatures shows good agreement with experimental data

    Controlling the half-metallicity of Heusler/Si(1 1 1) interfaces by a monolayer of Si–Co–Si

    Get PDF
    By using first-principles calculations we show that the spin-polarization reverses its sign at atomically abrupt interfaces between the half-metallic Co₂ (Fe,Mn)(Al,Si) and Si(1 1 1). This unfavourable spin-electronic configuration at the Fermi-level can be completely removed by introducing a Si–Co–Si monolayer at the interface. In addition, this interfacial monolayer shifts the Fermi-level from the valence band edge close to the conduction band edge of Si. We show that such a layer is energetically favourable to exist at the interface. This was further confirmed by direct observations of CoSi₂ nano-islands at the interface, by employing atomic resolution scanning transmission electron microscopy

    The role of chemical structure on the magnetic and electronic properties of Co2FeAl0.5Si0.5/Si(111) interface

    Get PDF
    We show that Co2FeAl0.5Si0.5 film deposited on Si(111) has a single crystal structure and twin related epitaxial relationship with the substrate. Sub-nanometer electron energy loss spectroscopy shows that in a narrow interface region there is a mutual inter-diffusion dominated by Si and Co. Atomic resolution aberration-corrected scanning transmission electron microscopy reveals that the film has B2 ordering. The film lattice structure is unaltered even at the interface due to the substitu- tional nature of the intermixing. First-principles calculations performed using structural models based on the aberration corrected electron microscopy show that the increased Si incorporation in the film leads to a gradual decrease of the magnetic moment as well as significant spin-polarization reduction. These effects can have significant detrimental role on the spin injection from the Co2FeAl0.5Si0.5 film into the Si substrate, besides the structural integrity of this junction

    Theory of momentum-resolved magnon electron energy loss spectra: The case of Yttrium Iron Garnet

    Get PDF
    We explore the inelastic spectra of electrons impinging in a magnetic system. The methodology here presented is intended to highlight the charge-dependent interaction of the electron beam in a STEM-EELS experiment, and the local vector potential generated by the magnetic lattice. This interaction shows an intensity 10−210^{-2} smaller than the purely spin interaction, which is taken to be functionally the same as in the inelastic neutron experiment. On the other hand, it shows a strong scattering vector dependence (κ−4\kappa^{-4}) and a dependence with the relative orientation between the probe wavevector and the local magnetic moments of the solid. We present YIG as a case study due to its high interest by the community

    Correlation between spin transport signal and Heusler/semiconductor interface quality in lateral spin-valve devices

    Get PDF
    We show direct evidence for the impact of Heusler/semiconductor interfaces atomic structure on the spin transport signals in semiconductor-based lateral spin-valve (LSV) devices. Based on atomic scale Z-contrast scanning transmission electron microscopy and energy dispersive x-ray spectroscopy we show that atomic order/disorder of Co2FeAlSi (CFAS)/-Ge LSV devices is critical for the spin injection in Ge. By conducting a postannealing of the LSV devices, we find 90% decrease in the spin signal while there is no difference in the electrical properties of the CFAS /n-Ge contacts and in the spin diffusion length of the n-Ge layer. We show that the reduction in the spin signals after annealing is attributed to the presence of intermixing phases at the Heusler/semiconductor interface. First-principles calculations show how that intermixed interface region has drastically reduced spin polarization at the Fermi level, which is the main cause for the significant decrease of the spin signal in the annealed devices above 300 C

    Modification of the van der Waals interaction at the Bi2Te3{\mathrm{Bi}}_{2}{\mathrm{Te}}_{3} and Ge(111) interface

    Get PDF
    We present a structural and density-functional theory study of the interface of the quasi-twin-free grown three-dimensional topological insulator Bi2Te3 on Ge(111). Aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy in combination with first-principles calculations show that the weak van der Waals adhesion between the Bi2Te3 quintuple layer and Ge can be overcome by forming an additional Te layer at their interface. The first-principles calculations of the formation energy of the additional Te layer show it to be energetically favorable as a result of the strong hybridization between the Te and Ge

    RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p

    Data for Growth and characterisation of MnSb (0001) / InGaAs (111) A epitaxial films

    No full text
    MnSb layers have been grown on In x Ga 1 − x As(111)A virtual substrates using molecular beam epitaxy (MBE). The effects of both substrate temperature ( T sub ) and Sb/Mn beam flux ratio ( J Sb/Mn) were investigated. The sur- face morphology, layer and interface structural quality, and magnetic prop- erties have been studied for a 3 × 3 grid of T sub and J Sb/Mn values. Com- pared to known optimal MBE conditions for MnSb/GaAs(111) [ T sub =415 ◦ C, J Sb/Mn =6.5], a lower substrate temperature is required for sharp interface formation when growing MnSb on In 0 . 48 Ga 0 . 52 As(111)A [ T sub =350 ◦ C, J Sb/Mn =6.5]. At high flux ratio ( J Sb/Mn =9.5) elemental Sb is readily incorporated into MnSb films. At higher substrate temperatures and lower flux ratios, (In,Ga)Sb inclusions in the MnSb are formed, as well as MnAs inclusions within the substrate. The Sb and (In,Ga)Sb inclusions are epitaxial, while MnAs in- clusions are endotaxial, i.e. all have a crytallographic relationship to the substrate and epilayer. MBE optimisation towards different device struc- tures is discussed along with results from a two-stage growth scheme

    The Effect of Cobalt-Sublattice Disorder on Spin Polarisation in Co2FexMn1−xSi Heusler Alloys

    No full text
    In this work we present a theoretical study of the effect of disorder on spin polarisation at the Fermi level, and the disorder formation energies for Co2FexMn1−xSi (CFMS) alloys. The electronic calculations are based on density functional theory with a Hubbard U term. Chemical disorders studied consist of swapping Co with Fe/Mn and Co with Si; in all cases we found these are detrimental for spin polarisation, i.e., the spin polarisation not only decreases in magnitude, but also can change sign depending on the particular disorder. Formation energy calculation shows that Co–Si disorder has higher energies of formation in CFMS compared to Co2MnSi and Co2FeSi, with maximum values occurring for x in the range 0.5–0.75. Cross-sectional structural studies of reference Co2MnSi, Co2Fe0.5Mn0.5Si, and Co2FeSi by Z-contrast scanning transmission electron microscopy are in qualitative agreement with total energy calculations of the disordered structures
    corecore