488 research outputs found

    Entanglement trapping in a non-stationary structured reservoir

    Get PDF
    We study a single two-level atom interacting with a reservoir of modes defined by a reservoir structure function with a frequency gap. Using the pseudomodes technique, we derive the main features of a trapping state formed in the weak coupling regime. Utilising different entanglement measures we show that strong correlations and entanglement between the atom and the modes are in existence when this state is formed. Furthermore, an unexpected feature for the reservoir is revealed. In the long time limit and for weak coupling the reservoir spectrum is not constant in time.Comment: 10 pages, 16 figure

    Molecular heat pump for rotational states

    Get PDF
    In this work we investigate the theory for three different uni-directional population transfer schemes in trapped multilevel systems which can be utilized to cool molecular ions. The approach we use exploits the laser-induced coupling between the internal and motional degrees of freedom so that the internal state of a molecule can be mapped onto the motion of that molecule in an external trapping potential. By sympathetically cooling the translational motion back into its ground state the mapping process can be employed as part of a cooling scheme for molecular rotational levels. This step is achieved through a common mode involving a laser-cooled atom trapped alongside the molecule. For the coherent mapping we will focus on adiabatic passage techniques which may be expected to provide robust and efficient population transfers. By applying far-detuned chirped adiabatic rapid passage pulses we are able to achieve an efficiency of better than 98% for realistic parameters and including spontaneous emission. Even though our main focus is on cooling molecular states, the analysis of the different adiabatic methods has general features which can be applied to atomic systems

    Provenance-Centered Dataset of Drug-Drug Interactions

    Get PDF
    Over the years several studies have demonstrated the ability to identify potential drug-drug interactions via data mining from the literature (MEDLINE), electronic health records, public databases (Drugbank), etc. While each one of these approaches is properly statistically validated, they do not take into consideration the overlap between them as one of their decision making variables. In this paper we present LInked Drug-Drug Interactions (LIDDI), a public nanopublication-based RDF dataset with trusty URIs that encompasses some of the most cited prediction methods and sources to provide researchers a resource for leveraging the work of others into their prediction methods. As one of the main issues to overcome the usage of external resources is their mappings between drug names and identifiers used, we also provide the set of mappings we curated to be able to compare the multiple sources we aggregate in our dataset.Comment: In Proceedings of the 14th International Semantic Web Conference (ISWC) 201

    Adiabatic entanglement in two-atom cavity QED

    Get PDF
    We analyse the problem of a single mode field interacting with a pair of two level atoms. The atoms enter and exit the cavity at different times. Instead of using constant coupling, we use time dependent couplings which represent the spatial dependence of the mode. Although the system evolution is adiabatic for most of the time, a previously unstudied energy crossing plays a key role in the system dynamics when the atoms have a time delay. We show that conditional atom-cavity entanglement can be generated, while for large photon numbers the entangled system has a behaviour which can be mapped onto the single atom Jaynes-Cummings model. Exploring the main features of this system we propose simple and fairly robust methods for entangling atoms independently of the cavity, for quantum state mapping, and for implementing SWAP and C-NOT gates with atomic qubits.Comment: 15 pages, 7 figure

    Restless legs syndrome is contributing to fatigue and low quality of life levels in hemodialysis patients

    Get PDF
    AIM: To examine whether hemodialysis (HD) patients with restless legs syndrome (RLS) are subjects of greater fatigue and impaired quality of life (QoL) compared to HD patients without RLS. METHODS: Eighty five stable HD patients participated in this study. According to their RLS status, the patients were divided into the RLS group (n = 23) and the non-RLS group (n = 62). QoL, fatigue, sleep quality, daily sleepiness and depression symptoms were assessed by using various questionnaires. Finally, biochemical parameters including iron, ferritin, hemoglobin, hematocrit and parathormone were assessed. RESULTS: The HD patients with RLS scored worse in all the questionnaires used in the study (P < 0.05). The patients with RLS were more likely to receive the HD therapy on the morning shift, whilst 43.5% of the RLS patients reported to experience the RLS symptoms also during HD. The severity of RLS was correlated with fatigue, depression score and sleep quality (P < 0.05). CONCLUSION: HD patients with RLS are subject to lower QoL related parameters and greater fatigue compared to HD patients without RLS. RLS should be successfully managed in order to improve the QoL of the sufferers

    Geriatric pharmacotherapy : optimisation through integrated approach in the hospital setting

    Get PDF
    Since older patients are more vulnerable to adverse drug-related events, there is a need to ensure appropriate prescribing in these patients in order to prevent misuse, overuse and underuse of drugs. Different tools and strategies have been developed to reduce inappropriate prescribing; the available measures can be divided into medication assessment tools, and specific interventions to reduce inappropriate prescribing. Implicit criteria of inappropriate prescribing focus on appropriate dosing, search for drug-drug interactions, and increase adherence. Explicit criteria are consensus-based standards focusing on drugs and diseases and include lists of drugs to avoid in general or lists combining drugs with clinical data. These criteria take into consideration differences between patients, and stand for a medication review, by using a systematic approach. Different types of interventions exist in order to reduce inappropriate prescribing in older patients, such as: educational interventions, computerized decision support systems, pharmacist-based interventions, and geriatric assessment. The effects of these interventions have been studied, sometimes in a multifaceted approach combining different techniques, and all types seem to have positive effects on appropriateness of prescribing. Interdisciplinary teamwork within the integrative pharmaceutical care is important for improving of outcomes and safety of drug therapy. The pharmaceutical care process consists offour steps, which are cyclic for an individual patient. These steps are pharmaceutical anamnesis, medication review, design and follow-up of a pharmaceutical care plan. A standardized approach is necessary for the adequate detection and evaluation of drug-related problems. Furthermore, it is clear that drug therapy should be reviewed in-depth, by having full access to medical records, laboratory values and nursing notes. Although clinical pharmacists perform the pharmaceutical care process to manage the patient’s drug therapy in every day clinical practice, the physician takes the ultimate responsibility for the care of the patient in close collaboration with nurses

    A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations

    Get PDF
    Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, ∆fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ mol–1, respectively. The ∆fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 ± 3.2, –446.6 ± 2.7, –702.1 ± 3.5, –487.8 ± 3.4 and –285.2 ± 3.2 kJ mol–1, respectively
    corecore