511 research outputs found
Optimal Resource Allocation for Markovian Queueing Networks: The Complete Information Case
The problem of finding the optimal routing and flow control of a single-class Markovian network under a suitable optimization criterion is analyzed. It is proven that, if complete information about the state of the network is made available to the network controller, the optimal state dependent routing is essentially deterministic, and the optimal flow control is of a generalized window type. An iterative linear programming algorithm is given for the derivation of the optimal routing and flow control policy
Load Balancing Algorithms for Jacksonian Networks with Acknowledgement Delays
Load balancing algorithms for Jacksonian networks are derived. The state of the network is represented by the total number of packets for which the source has not yet received an acknowledgement, The networks studied are subject to the state independent routing and, state dependent and state independent flow control. The objective is to maximize the throughput of the network so that the end-to-end expected packet time delay does not exceed an upper bound. The optimal flow control is shown to be a window type, while the routing policy balances the traffic inside the network. Several load balancing algorithms are evaluated
Decentralized Network Flow Control
In this paper, the problem of finding the decentralized flow control of a BCMP network is investigated. The packets of each of the users correspond to different classes of customers. The servers in the network are exponential and serve packets with FIFO policy. Each network user operates with either a state-dependent arrival rate (i.e. an arrival rate which depends upon the number of the user\u27s packets that have not yet been acknowledged) or a state-dependent arrival rate (which the user chooses). The decentralized flow control problem is formulated udder two optimization criteria. Under the first optimization criterion, the decentralized flow control corresponding to each of the network users maximizes the throughput of the network, under the constraint that the expected time delay of the packets in the network does not exceed a preassigned upper bound. Under the second optimization criterion, the decentralized flow control corresponding to each of the network users maximizes the throughput of the network, under the constraint that the expected time delay of each particular class of packets does not exceed a preassigned (user dependent) upper bound. In this paper all the previous classes of problems are handled uniformly, using efficient nonlinear optimization techniques
The Effect of Delayed Feedback Information on Network Performance
The performance of a network subject to either state dependent or state independent flow control is investigated. In the state dependent case, the flow control policy is a function of the total number of packets for which the controller has not yet received an acknowledgement. In this case it is shown that the optimal flow control is a sliding window mechanism. The effect of the delayed feedback on the network performance as well as the size of the window are studied. The state independent optimal rate is also derived. The performance of the state dependent and state independent flow control policies are compared. Conditions for employing one of the two types of flow control policies for superior end-to-end network performance are discussed. All the results obtained are demonstrated using simple examples
Asynchronous Algorithms for Optimal Flow Control of BCMP Networks
The decentralized flow control problem for an open multiclass BCMP network is studied. The power based optimization criterion is employed for the derivation of the optimal flow control for each of the network\u27s users. It is shown that that optimal arrival rates correspond to the unique Nash equilibrium point of a noncooperative game problem. Asynchronous algorithms are presented for the computation of the Nash equilibrium point of the network. Among them, the nonlinear Gauss-Seidel algorithms is distinguished for its robustness and speed of convergence
Long-Term Efficacy and Safety of Adalimumab in Pediatric Patients with Crohn's Disease
Background: IMAgINE 1 assessed 52-week efficacy and safety of adalimumab in children with moderate to severe Crohn's disease. Long-Term efficacy and safety of adalimumab for patients who entered the IMAgINE 2 extension are reported. Methods: Patients who completed IMAgINE 1 could enroll in IMAgINE 2. Endpoints assessed from weeks 0 to 240 of IMAgINE 2 were Pediatric Crohn's Disease Activity Index remission (Pediatric Crohn's Disease Activity Index ≤ 10) and response (Pediatric Crohn's Disease Activity Index decrease ≥15 from IMAgINE 1 baseline) using observed analysis and hybrid nonresponder imputation (hNRI). For hNRI, discontinued patients were imputed as failures unless they transitioned to commercial adalimumab (with study site closure) or adult care, where last observation was carried forward. Corticosteroid-free remission in patients receiving corticosteroids at IMAgINE 1 baseline, discontinuation of immunomodulators (IMMs) in patients receiving IMMs at IMAgINE 2 baseline, and linear growth improvement were reported as observed. Adverse events were assessed for patients receiving ≥1 adalimumab dose in IMAgINE 1 and 2 through January 2015. Results: Of 100 patients enrolled in IMAgINE 2, 41% and 48% achieved remission and response (hNRI) at IMAgINE 2 week 240. Remission rates were maintained by 45% (30/67, hNRI) of patients who entered IMAgINE 2 in remission. At IMAgINE 2 week 240, 63% (12/19) of patients receiving corticosteroids at IMAgINE 1 baseline achieved corticosteroid-free remission and 30% (6/20) of patients receiving IMMs at IMAgINE 2 baseline discontinued IMMs. Adalimumab treatment led to growth velocity normalization. No new safety signals were identified. Conclusions: Efficacy and safety profiles of prolonged adalimumab treatment in children with Crohn's disease were consistent with IMAgINE 1 and adult Crohn's disease adalimumab trials
A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era.
Pediatric tumors are uncommon, yet are the leading cause of cancer-related death in childhood. Tumor types, molecular characteristics, and pathogenesis are unique, often originating from a single genetic driver event. The specific diagnostic challenges of childhood tumors led to the development of the first World Health Organization (WHO) Classification of Pediatric Tumors. The classification is rooted in a multilayered approach, incorporating morphology, IHC, and molecular characteristics. The volume is organized according to organ sites and provides a single, state-of-the-art compendium of pediatric tumor types. A special emphasis was placed on blastomas, which variably recapitulate the morphologic maturation of organs from which they originate. SIGNIFICANCE: In this review, we briefly summarize the main features and updates of each chapter of the inaugural WHO Classification of Pediatric Tumors, including its rapid transition from a mostly microscopic into a molecularly driven classification systematically taking recent discoveries in pediatric tumor genomics into account
Taking the Metabolic Pulse of the World\u27s Coral Reefs
Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems
- …