1,476 research outputs found

    A Method for Determining Offtracking of Multiple Unit Vehicle Combinations

    Get PDF
    The required road width around curves on forest roads is largely determined by the difference in wheel paths between the inside front tractor wheel and the inside rear trailer wheel. This difference, known as offtracking, is a function of the vehicle and road geometry. This paper presents a method for determining the offtracking of fixed and variable length multiple unit vehicle combinations travelling over forest roads. The computational method numerically integrates the differential equations which compute the path (tractrix) that the rear of a vehicle follows from a given steering curve. A unique three-point solution method is used to determine the instantaneous center of rotation for trailers in the vehicle combination. The method is shown to have good agreement with experimental data. It is suitable for use on microcomputers for single and multiple curves. A microcomputer program, OFFTRACK, was developed using this methodology

    Analytical Study of Certain Magnetohydrodynamic-alpha Models

    Full text link
    In this paper we present an analytical study of a subgrid scale turbulence model of the three-dimensional magnetohydrodynamic (MHD) equations, inspired by the Navier-Stokes-alpha (also known as the viscous Camassa-Holm equations or the Lagrangian-averaged Navier-Stokes-alpha model). Specifically, we show the global well-posedness and regularity of solutions of a certain MHD-alpha model (which is a particular case of the Lagrangian averaged magnetohydrodynamic-alpha model without enhancing the dissipation for the magnetic field). We also introduce other subgrid scale turbulence models, inspired by the Leray-alpha and the modified Leray-alpha models of turbulence. Finally, we discuss the relation of the MHD-alpha model to the MHD equations by proving a convergence theorem, that is, as the length scale alpha tends to zero, a subsequence of solutions of the MHD-alpha equations converges to a certain solution (a Leray-Hopf solution) of the three-dimensional MHD equations.Comment: 26 pages, no figures, will appear in Journal of Math Physics; corrected typos, updated reference

    Independent Interactions of Phosphorylated β-Catenin with E-Cadherin at Cell-Cell Contacts and APC at Cell Protrusions

    Get PDF
    BACKGROUND: The APC tumour suppressor functions in several cellular processes including the regulation of β-catenin in Wnt signalling and in cell adhesion and migration. FINDINGS: In this study, we establish that in epithelial cells N-terminally phosphorylated β-catenin specifically localises to several subcellular sites including cell-cell contacts and the ends of cell protrusions. N-terminally phosphorylated β-catenin associates with E-cadherin at adherens junctions and with APC in cell protrusions. We isolated APC-rich protrusions from stimulated cells and detected β-catenin, GSK3β and CK1α, but not axin. The APC/phospho-β-catenin complex in cell protrusions appears to be distinct from the APC/axin/β-catenin destruction complex. GSK3β phosphorylates the APC-associated population of β-catenin, but not the cell junction population. β-catenin associated with APC is rapidly phosphorylated and dephosphorylated. HGF and wound-induced cell migration promote the localised accumulation of APC and phosphorylated β-catenin at the leading edge of migrating cells. APC siRNA and analysis of colon cancer cell lines show that functional APC is required for localised phospho-β-catenin accumulation in cell protrusions. CONCLUSIONS: We conclude that N-terminal phosphorylation of β-catenin does not necessarily lead to its degradation but instead marks distinct functions, such as cell migration and/or adhesion processes. Localised regulation of APC-phospho-β-catenin complexes may contribute to the tumour suppressor activity of APC

    Accidental Releases of Sour Gas From Wells and Collection Pipelines in the Overthrust Belt: Calculating and Assessing Potential Health and Environmental Risks

    Get PDF
    Parts of the Overthrust Belt of western Wyoming and adjoining areas in Utah and Idaho contain geologic formations with significant accumulations of oil and natural gas. Some of these formations, though, yield gas that is contaminated with toxic hydrogen sulfide. As a consequence, the development of these so-called sour-gas reservoirs requires special safety procedures and technologies in order to prevent accidental releases of gas to the atmosphere that could cause adverse occupational and public health effects. To improve the analysis and assessment of wells and collection pipelines completed on lands leased from the Federal Government, the Minerals Management Service, Onshore Operations, now part of the Bureau of Land Management (BLM), asked Lawrence Livermore National Laboratory to conduct a study to test methods to the analysis of the potential risks associated with the development of sour-gas resources located near Evanston, Wyoming. The process of assessing the health risks of a potential sour-gas release involves estimation of the emission rate of hydrogen sulfide, specification of how the gas is released (e.g., vertically into the atmosphere or horizontally), prediction of downwind concentrations of the gas, analysis of the potential health effects, and finally, review of safety methods required to minimize the potential health risks. The first part of the report includes an analysis of data on the health effects of hydrogen sulfide to determine the nature of its dose-response relationship. Following that review is a study of the different methods of quantifying the emission rate of gas from wells and pipelines. Data on the frequency of accidental releases from those facilities are also analyzed. To assess the health risks of an accidental release from a well under BLM supervision located near Evanston, we collected meteorological data for 1 yr from four stations in that area. Our analysis of a worst-case release scenario (i.e., a gas plume that is near the surface) using those data indicates that the greatest risks of incurring an acute health effect (e.g., unconsciousness, respiratory arrest, pulmonary edema, or death) are located in the northwest sector downwind from the well because of the occurrence of stable atmospheric conditions along with slow winds from the southeast. The risks of an acute health effect in that northwest sector over the 20-yr operation of the well were on the order of 10 -4 to 10 -5 -- similar to the risk of accidental death caused by a natural disaster over the same period

    Mathematical results for some α\displaystyle{\alpha} models of turbulence with critical and subcritical regularizations

    Full text link
    In this paper, we establish the existence of a unique "regular" weak solution to turbulent flows governed by a general family of α\alpha models with critical regularizations. In particular this family contains the simplified Bardina model and the modified Leray-α\alpha model. When the regularizations are subcritical, we prove the existence of weak solutions and we establish an upper bound on the Hausdorff dimension of the time singular set of those weak solutions. The result is an interpolation between the bound proved by Scheffer for the Navier-Stokes equations and the regularity result in the critical case

    The role of pathology in an investigation of an outbreak of West Nile encephalitis in New York, 1999.

    Get PDF
    An outbreak of encephalitis occurred in New York City in late August 1999, the first caused by West Nile virus in North America. Histopathologic and immunopathologic examinations performed on human autopsy materials helped guide subsequent laboratory and epidemiologic investigations that led to identification of the etiologic agent

    Brucella exposure risk events in 10 clinical laboratories, New York City, USA, 2015 to 2017

    Get PDF
    Copyright © 2020 American Society for Microbiology. All Rights Reserved. From 2015 to 2017, 11 confirmed brucellosis cases were reported in New York City, leading to 10 Brucella exposure risk events (Brucella events) in 7 clinical laboratories (CLs). Most patients had traveled to countries where brucellosis is endemic and presented with histories and findings consistent with brucellosis. CLs were not notified that specimens might yield a hazardous organism, as the clinicians did not consider brucellosis until they were notified that bacteremia with Brucella was suspected. In 3 Brucella events, the CLs did not suspect that slow-growing, small Gram-negative bacteria might be harmful. Matrix-assisted laser desorption ionization- time of flight mass spectrometry (MALDI-TOF MS), which has a limited capacity to identify biological threat agents (BTAs), was used during 4 Brucella events, which accounted for 84% of exposures. In 3 of these incidents, initial staining of liquid media showed Gram-positive rods or cocci, including some cocci in chains, suggesting streptococci. Over 200 occupational exposures occurred when the unknown isolates were manipulated and/or tested on open benches, including by procedures that could generate infectious aerosols. During 3 Brucella events, the CLs examined and/or manipulated isolates in a biological safety cabinet (BSC); in each CL, the CL had previously isolated Brucella. Centers for Disease Control and Prevention recommendations to prevent laboratory-acquired brucellosis (LAB) were followed; no seroconversions or LAB cases occurred. Laboratory assessments were conducted after the Brucella events to identify facility-specific risks and mitigations. With increasing MALDI-TOF MS use, CLs are well-advised to adhere strictly to safe work practices, such as handling and manipulating all slow-growing organisms in BSCs and not using MALDI-TOF MS for identification until BTAs have been ruled out

    Time evolution, cyclic solutions and geometric phases for the generalized time-dependent harmonic oscillator

    Full text link
    The generalized time-dependent harmonic oscillator is studied. Though several approaches to the solution of this model have been available, yet a new approach is presented here, which is very suitable for the study of cyclic solutions and geometric phases. In this approach, finding the time evolution operator for the Schr\"odinger equation is reduced to solving an ordinary differential equation for a c-number vector which moves on a hyperboloid in a three-dimensional space. Cyclic solutions do not exist for all time intervals. A necessary and sufficient condition for the existence of cyclic solutions is given. There may exist some particular time interval in which all solutions with definite parity, or even all solutions, are cyclic. Criterions for the appearance of such cases are given. The known relation that the nonadiabatic geometric phase for a cyclic solution is proportional to the classical Hannay angle is reestablished. However, this is valid only for special cyclic solutions. For more general ones, the nonadiabatic geometric phase may contain an extra term. Several cases with relatively simple Hamiltonians are solved and discussed in detail. Cyclic solutions exist in most cases. The pattern of the motion, say, finite or infinite, can not be simply determined by the nature of the Hamiltonian (elliptic or hyperbolic, etc.). For a Hamiltonian with a definite nature, the motion can changes from one pattern to another, that is, some kind of phase transition may occur, if some parameter in the Hamiltonian goes through some critical value.Comment: revtex4, 28 pages, no figur

    Political mobilisation by minorities in Britain: negative feedback of ‘race relations'?

    Get PDF
    This article uses a political opportunity approach to study the relationship of minority groups to the political community in Britain. The main argument is that the British race relations approach established in the 1960s had an important effect that still shapes the patterns of political contention by different minority groups today. Original data on political claims-making by minorities demonstrate that British 'racialised' cultural pluralism has structured an inequality of opportunities for the two main groups, African-Caribbeans and Indian subcontinent minorities. African-Caribbeans mobilise along racial lines, use a strongly assimilative 'black' identity, conventional action forms, and target state institutions with demands for justice that are framed within the recognised framework of race relations. Conversely, a high proportion of the Indian subcontinent minority mobilisation is by Muslim groups, a non-assimilative religious identity. These are autonomously organised, but largely make public demands for extending the principle of racial equality to their non-racial group. Within the Indian subcontinent minorities, the relative absence of mobilisation by Indian, Sikh and Hindu minorities, who have achieved much better levels of socio-economic success than Pakistani and Bangladeshi Muslims, suggests that there is also a strong socioeconomic basis for shared experiences and grievances as Muslims in Britain. This relativises the notion that Muslim mobilisation is Britain is purely an expression of the right for cultural difference per se, and sees it as a product of the paradoxes of British race relations

    Ion acoustic wave experiments in a high school plasma physics laboratory

    Get PDF
    We describe a successful alliance between a university and several high schools. The alliance is centered on a laboratory experiment constructed by students and faculty. The experiment involves sophisticated concepts and equipment not readily available in high schools. Much of the experiment is directly related to the science and mathematics learned in high school, with opportunities to extend their understanding by applying it to a research experience. The experiment is in plasma physics, but a similar alliance can be implemented in any area of science. Although the number of high school students affected by any one alliance is small, the impact is potentially large in the scientific life of a participating student or teacher
    corecore