208 research outputs found
Density of states and electron concentration of double heterojunctions subjected to an in-plane magnetic field
We calculate the electronic states of
AlGaAs/GaAs/AlGaAs double heterojunctions subjected to
a magnetic field parallel to the quasi two-dimensional electron gas. We study
the energy dispersion curves, the density of states, the electron concentration
and the distribution of the electrons in the subbands. The parallel magnetic
field induces severe changes in the density of states, which are of crucial
importance for the explanation of the magnetoconductivity in these structures.
However, to our knowledge, there is no systematic study of the density of
states under these circumstances. We attempt a contribution in this direction.
For symmetric heterostructures, the depopulation of the higher subbands, the
transition from a single to a bilayer electron system and the domination of the
bulk Landau levels in the centre the wide quantum well, as the magnetic field
is continuously increased, are presented in the ``energy dispersion picture''
as well as in the ``electron concentration picture'' and in the ``density of
states picture''.Comment: J. Phys.: Condens. Matter 11 No 26 (5 July 1999) 5131-5141 Figures
(three) embedde
A circumstellar dust disk around T Tau N: Sub-arcsecond imaging at 3 mm
We present high-resolution imaging of the young binary T Tauri in 3 mm
continuum emission. Compact dust emission with integrated flux density 50 +/- 6
mJy is resolved in an aperture synthesis map at 0.5" resolution and is centered
at the position of the optically visible component, T Tau N. No emission above
a 3 sigma level of 9 mJy is detected 0.7" south of T Tau N at the position of
the infrared companion, T Tau S. We interpret the continuum detection as
arising from a circumstellar disk around T Tau N and estimate its properties by
fitting a flat-disk model to visibilities at wavelengths of 1 and 3 mm and to
the flux density at 7 mm. Given the data, probability distributions are
calculated for values of the free parameters, including the temperature,
density, dust opacity, and the disk outer radius. The radial variation in
temperature and density is not narrowly constrained by the data. The most
likely value of the frequency dependence of the dust opacity, beta =
0.53^{+0.27}_{-0.17}, is consistent with that of disks around other T Tauri
stars in which grain growth is believed to have taken place. The outer radius,
R = 41^{+26}_{-14} AU, is smaller than the projected binary separation, and may
indicate truncation of the disk. The total mass estimated for the disk,
log(M/M_sun) = {-2.4}^{+0.7}_{-0.6}, is similar to masses observed around many
young single sources and to the minimum nebular mass required to form a
planetary system like our own. This observation strongly suggests that the
presence of a binary companion does not rule out the formation of a sizeable
planetary system.Comment: Accepted by the Astrophysical Journal. 13 pages Latex (uses AASTeX
macros) including 3 postscript figures. Also at
http://astro.berkeley.edu/~rla
Crack-Like Processes Governing the Onset of Frictional Slip
We perform real-time measurements of the net contact area between two blocks
of like material at the onset of frictional slip. We show that the process of
interface detachment, which immediately precedes the inception of frictional
sliding, is governed by three different types of detachment fronts. These
crack-like detachment fronts differ by both their propagation velocities and by
the amount of net contact surface reduction caused by their passage. The most
rapid fronts propagate at intersonic velocities but generate a negligible
reduction in contact area across the interface. Sub-Rayleigh fronts are
crack-like modes which propagate at velocities up to the Rayleigh wave speed,
VR, and give rise to an approximate 10% reduction in net contact area. The most
efficient contact area reduction (~20%) is precipitated by the passage of slow
detachment fronts. These fronts propagate at anomalously slow velocities, which
are over an order of magnitude lower than VR yet orders of magnitude higher
than other characteristic velocity scales such as either slip or loading
velocities. Slow fronts are generated, in conjunction with intersonic fronts,
by the sudden arrest of sub-Rayleigh fronts. No overall sliding of the
interface occurs until either of the slower two fronts traverses the entire
interface, and motion at the leading edge of the interface is initiated. Slip
at the trailing edge of the interface accompanies the motion of both the slow
and sub-Rayleigh fronts. We might expect these modes to be important in both
fault nucleation and earthquake dynamics.Comment: 19 page, 5 figures, to appear in International Journal of Fractur
Sum rules and electrodynamics of high-Tc cuprates in the pseudogap state
We explore connections between the electronic density of states (DOS) in a
conducting system and the frequency dependence of the scattering rate
inferred from infrared spectroscopy. We show that changes in
the DOS upon the development of energy gaps can be reliably tracked through the
examination of the spectra using the sum rules discussed in
the text. Applying this analysis to the charge dynamics in high- cuprates
we found radically different trends in the evolution of the DOS in the
pseudogap state and in the superconducting state.Comment: 4 pages, 3 figure
Static lattice distortions and the structure of Au/Si(111)-(5×1): An x-ray-diffraction study
Grazing-incidence x-ray diffraction has been used to determine the atomic arrangement in the 5×1 structure of Au on Si(111). The main features of this structure are partially occupied rows of gold atoms in low-symmetry sites. The density of Au atoms is highly asymmetric in the direction perpendicular to the rows. The substrate atoms in the top double layer are shifted up to 1 Å from their bulk position. The structure has a disordered 5×2 periodicity due to the variation of the interatomic Au-Au distances within a row in the [011¯] direction. The model is consistent with recent scanning-tunneling-microscopy topographs
Mild Sensory Stimulation Completely Protects the Adult Rodent Cortex from Ischemic Stroke
Despite progress in reducing ischemic stroke damage, complete protection remains elusive. Here we demonstrate that, after permanent occlusion of a major cortical artery (middle cerebral artery; MCA), single whisker stimulation can induce complete protection of the adult rat cortex, but only if administered within a critical time window. Animals that receive early treatment are histologically and behaviorally equivalent to healthy controls and have normal neuronal function. Protection of the cortex clearly requires reperfusion to the ischemic area despite permanent occlusion. Using blood flow imaging and other techniques we found evidence of reversed blood flow into MCA branches from an alternate arterial source via collateral vessels (inter-arterial connections), a potential mechanism for reperfusion. These findings suggest that the cortex is capable of extensive blood flow reorganization and more importantly that mild sensory stimulation can provide complete protection from impending stroke given early intervention. Such non-invasive, non-pharmacological intervention has clear translational potential
Plate-boundary deformation associated with the great Sumatra–Andaman earthquake
The Sumatra–Andaman earthquake of 26 December 2004 is the first giant earthquake (moment magnitude M_w > 9.0) to have occurred since the advent of modern space-based geodesy and broadband seismology. It therefore provides an unprecedented opportunity to investigate the characteristics of one of these enormous and rare events. Here we report estimates of the ground displacement associated with this event, using near-field Global Positioning System (GPS) surveys in northwestern Sumatra combined with in situ and remote observations of the vertical motion of coral reefs. These data show that the earthquake was generated by rupture of the Sunda subduction megathrust over a distance of >1,500 kilometres and a width of <150 kilometres. Megathrust slip exceeded 20 metres offshore northern Sumatra, mostly at depths shallower than 30 kilometres. Comparison of the geodetically and seismically inferred slip distribution indicates that ~30 per cent additional fault slip accrued in the 1.5 months following the 500-second-long seismic rupture. Both seismic and aseismic slip before our re-occupation of GPS sites occurred on the shallow portion of the megathrust, where the large Aceh tsunami originated. Slip tapers off abruptly along strike beneath Simeulue Island at the southeastern edge of the rupture, where the earthquake nucleated and where an M_w = 7.2 earthquake occurred in late 2002. This edge also abuts the northern limit of slip in the 28 March 2005 M_w = 8.7 Nias–Simeulue earthquake
Identifying Molecular Effects of Diet through Systems Biology: Influence of Herring Diet on Sterol Metabolism and Protein Turnover in Mice
BACKGROUND: Changes in lifestyle have resulted in an epidemic development of obesity-related diseases that challenge the healthcare systems worldwide. To develop strategies to tackle this problem the focus is on diet to prevent the development of obesity-associated diseases such as cardiovascular disease (CVD). This will require methods for linking nutrient intake with specific metabolic processes in different tissues. METHODOLOGY/PRINCIPAL FINDING: Low-density lipoprotein receptor-deficient (Ldlr -/-) mice were fed a high fat/high sugar diet to mimic a westernized diet, being a major reason for development of obesity and atherosclerosis. The diets were supplemented with either beef or herring, and matched in macronutrient contents. Body composition, plasma lipids and aortic lesion areas were measured. Transcriptomes of metabolically important tissues, e.g. liver, muscle and adipose tissue were analyzed by an integrated approach with metabolic networks to directly map the metabolic effects of diet in these different tissues. Our analysis revealed a reduction in sterol metabolism and protein turnover at the transcriptional level in herring-fed mice. CONCLUSION: This study shows that an integrated analysis of transcriptome data using metabolic networks resulted in the identification of signature pathways. This could not have been achieved using standard clustering methods. In particular, this systems biology analysis could enrich the information content of biomedical or nutritional data where subtle changes in several tissues together affects body metabolism or disease progression. This could be applied to improve diets for subjects exposed to health risks associated with obesity
Variable Carbon Catabolism among Salmonella enterica Serovar Typhi Isolates
BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi) is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever) and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. METHODOLOGY/PRINCIPAL FINDINGS: To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas of typhoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates) was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. CONCLUSION: The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen
- …