20 research outputs found

    Flow-FISH analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target

    Get PDF
    By using hydrogenase gene-targeted polymerase chain reaction (PCR) and reverse transcriptase PCR (RT-PCR), the predominant clostridial hydrogenase that may have contributed to biohydrogen production in an anaerobic semi-solid fermentation system has been monitored. The results revealed that a Clostridium pasteurianum-like hydrogenase gene sequence can be detected by both PCR and RT-PCR and suggested that the bacterial strain possessing this specific hydrogenase gene was dominant in hydrogenase activity and population. Whereas another Clostridium saccharobutylicum-like hydrogenase gene can be detected only by RT-PCR and suggest that the bacterial strain possessing this specific hydrogenase gene may be less dominant in population. In this study, hydrogenase gene-targeted fluorescence in situ hybridization (FISH) and flow cytometry analysis confirmed that only 6.6% of the total eubacterial cells in a hydrogen-producing culture were detected to express the C. saccharobutylicum-like hydrogenase, whereas the eubacteria that expressed the C. pasteurianum-like hydrogenase was 25.6%. A clostridial strain M1 possessing the identical nucleotide sequences of the C. saccharobutylicum-like hydrogenase gene was then isolated and identified as Clostridium butyricum based on 16S rRNA sequence. Comparing to the original inoculum with mixed microflora, either using C. butyricum M1 as the only inoculum or co-culturing with a Bacillus thermoamylovorans isolate will guarantee an effective and even better production of hydrogen from brewery yeast waste

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production

    No full text
    By using brewery yeast waste and microflora from rice straw compost, an anaerobic semisolid bio-hydrogen-producing system has been established. For the purpose of industrialization, the major players of both aerobic and anaerobic bacterial strains in the system were isolated and their combination for an effective production of bio-hydrogen and other bio-fuels was examined in this study. The phylogenetic analysis found that four anaerobic isolates (Clostridium beijerinckii L9, Clostridium diolis Z2, Clostridium roseum Z5-1, and C. roseum W8) were highly related with each other and belongs to the cluster I clostridia family, the family that many of solvent-producing strains included. On the other hand, one of the aerobic isolates, the Bacillus thermoamylovorans strain I, shown multiple extracellular enzyme activities including lipase, protease, alpha-amylase, pectinase and cellulase, was suggested as a good partner for creating an anaerobic environment and pre-saccharification of substrate for those co-cultured solventogenic clostridial strain. Among these clostridial strains, though C. beijerinckii L9 do not show as many extracellular enzyme activities as Bacillus, but it performs the highest hydrogen-producing ability. The original microflora can be updated to a syntrophic bacterial co-culture system contended only with B. thermoamylovorans I and C. beijerinckii L9. The combination of aerobic Bacillus and anaerobic Clostridium may play the key role for developing the industrialized bio-fuels and bio-hydrogen-producing system from biomass. (C)2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved

    Improved multiple look technique

    No full text
    International Geoscience and Remote Sensing Symposium (IGARSS)157-59IGRS

    (Applied Microbiology and Biotechnology,70(5):598-604)Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR

    No full text
    Molecular biological approaches were developed to monitor the potential biohydrogen-producing clostridia in an anaerobic semisolid fermentation system that used brewery yeast waste as the fermentation substrate. The denaturing gradient gel electrophoresis with 16S rDNA gene-targeted polymerase chain reaction (PCR) analysis was employed to confirm the existence of clostridia in the system. Remarkably, reproducible nucleotide sequences of clostridia were obtained from different hydrogen production stages by using hydrogenase gene-targeted reverse transcription (RT)-PCR. These RNA-based information suggested that the predominant hydrogen-producing strains possess either a specific Clostridium pasteurianum-like or a specific Clostridium saccharobutylicum-like hydrogenase sequence. Comparison of the hydrogenase gene-targeted sequence profiles between PCR and RT-PCR revealed that the specific C. pasteurianum-like hydrogenase harboring bacterial strains were dominant in both mRNA and bacterial population level. On the other hand, the specific C. saccharobutylicum-like hydrogenase harboring strains expressed high level of hydrogenase mRNA but may not be dominant in population. Furthermore, quantitative real-time RT-PCR analysis showed the expression pattern of the clostridial hydrogenase mRNA and may serve as an activity index for the system

    Differential cytokine expression in EBV positive peripheral T cell lymphomas.

    Get PDF
    AIM: To investigate whether specific cytokines are secreted locally at the tumour site in Epstein-Barr virus (EBV) positive peripheral T cell lymphoma (PTCL). METHODS: An RNase protection assay system was used to study the differential expression of 21 cytokines in parallel in eight cases of EBV positive non-nasal PTCL, and compared with 11 EBV negative non-nasal PTCLs and three EBV positive nasal natural killer (NK) cell lymphomas. RESULTS: Among the eight EBV positive cases, interferon gamma (IFN-gamma), lymphotoxin beta (LT beta), interleukin 10 (IL-10), tumour necrosis factor alpha (TNF-alpha), transforming growth factor beta 1 (TGF-beta 1), and IL-1 receptor a (IL-Ra) were frequently detectable. IL-15, IL-6, IL-4, IL-1 beta, TNF-beta, and IL-9 were sporadically detectable. Of the frequently detectable cytokines, IFN-gamma and LT beta were commonly detected in the EBV negative cases. For cases with > 50% EBV encoded small non-polyadenylated RNA (EBER) positive cells, IL-10, TNF-alpha, and TGF-beta 1 were detected in three of three cases, and IL-1Ra in two of three cases. For cases with < 20% EBER positive cells, IL-10 was detected in three of five cases, TNF-alpha in two of four cases, but TGF-beta 1 and IL-1Ra were not detected. Interestingly, IL-6 was detected in two of three cases with > 50% EBER positive cells, but only in one of five cases with < 20% EBER positive cells. For comparison, in NK cell lymphomas, IL-10, TNF-alpha, IL-1Ra, and IL-6 were all detectable, but TGF-beta 1 was not detected at all. Immunohistochemical staining revealed IL-10 in many cells; in contrast, EBV latent membrane protein 1 (LMP1) was only found to be positive in isolated cells. CONCLUSIONS: Certain cytokines, such as IL-10 and TNF-alpha, might be expressed preferentially in EBV positive peripheral T cell lymphomas. It is likely that such a cytokine environment enhances EBV infection and contributes towards tumorigenesis
    corecore