3,252 research outputs found

    Thermoelectric properties of AgGaTe2_2 and related chalcopyrite structure materials

    Full text link
    We present an analysis of the potential thermoelectric performance of p-type AgGaTe2_{2}, which has already shown a ZTZT of 0.8 with partial optimization, and observe that the same band structure features, such as a mixture of light and heavy bands and isotropic transport, that lead to this good performance are present in certain other ternary chalcopyrite structure semiconductors. We find that optimal performance of AgGaTe2_2 will be found for hole concentrations between 4 ×1019\times 10^{19} and 2 ×1020\times 10^{20}cm3^{-3} at 900 K, and 2 ×1019\times 10^{19} and 1020^{20} cm3^{-3} at 700 K, and that certain other chalcopyrite semiconductors might show good thermoelectric performance at similar doping ranges and temperatures if not for higher lattice thermal conductivity

    The actions of Pasteurella multocida toxin on neuronal cells

    Get PDF
    Pasteurella multocida toxin (PMT) activates the G-proteins Gα, Gα, Gα Gα and Gα by deamidation of specific glutamine residues. A number of these alpha subunits have signalling roles in neurones. Hence we studied the action of this toxin on rat superior cervical ganglion (SCG) neurones and NG108-15 neuronal cells. Both Gα and Gα could be identified in SCGs with immunocytochemistry. PMT had no direct action on Kv7 or Cav2 channels in SCGs. However PMT treatment enhanced muscarinic receptor mediated inhibition of M-current (Kv7.2 + 7. 3) as measured by a 19-fold leftward shift in the oxotremorine-M concentration-inhibition curve. Agonists of other receptors, such as bradykinin or angiotensin, that inhibit M-current did not produce this effect. However the amount of PIP hydrolysis could be enhanced by PMT for all three agonists. In a transduction system in SCGs that is unlikely to be affected by PMT, Go mediated inhibition of calcium current, PMT was ineffective whereas the response was blocked by pertussis toxin as expected. M1 muscarinic receptor evoked calcium mobilisation in transformed NG108-15 cells was enhanced by PMT. The calcium rises evoked by uridine triphosphate acting on endogenous P2Y receptors in NG108-15 cells were enhanced by PMT. The time and concentration dependence of the PMT effect was different for the resting calcium compared to the calcium rise produced by activation of P2Y receptors. PMT's action on these neuronal cells would suggest that if it got into the brain, symptoms of a hyperexcitable nature would be seen, such as seizures. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved

    ``Good Propagation'' Constraints on Dual Invariant Actions in Electrodynamics and on Massless Fields

    Get PDF
    We present some consequences of non-anomalous propagation requirements on various massless fields. Among the models of nonlinear electrodynamics we show that only Maxwell and Born-Infeld also obey duality invariance. Separately we show that, for actions depending only on the F_\mn^2 invariant, the permitted models have L1+F2L \sim \sqrt{1 + F^2}. We also characterize acceptable vector-scalar systems. Finally we find that wide classes of gravity models share with Einstein the null nature of their characteristic surfaces.Comment: 11 pages, LaTeX, no figure

    How to detect level crossings without looking at the spectrum

    Full text link
    We remind the reader that it is possible to tell if two or more eigenvalues of a matrix are equal, without calculating the eigenvalues. We then use this property to detect (avoided) crossings in the spectra of quantum Hamiltonians representable by matrices. This approach provides a pedagogical introduction to (avoided) crossings, is capable of handling realistic Hamiltonians analytically, and offers a way to visualize crossings which is sometimes superior to that provided by the spectrum. We illustrate the method using the Breit-Rabi Hamiltonian to describe the hyperfine-Zeeman structure of the ground state hydrogen atom in a uniform magnetic field.Comment: Accepted for publication in the American Journal of Physic

    First-order symmetric-hyperbolic Einstein equations with arbitrary fixed gauge

    Get PDF
    We find a one-parameter family of variables which recast the 3+1 Einstein equations into first-order symmetric-hyperbolic form for any fixed choice of gauge. Hyperbolicity considerations lead us to a redefinition of the lapse in terms of an arbitrary factor times a power of the determinant of the 3-metric; under certain assumptions, the exponent can be chosen arbitrarily, but positive, with no implication of gauge-fixing.Comment: 5 pages; Latex with Revtex v3.0 macro package and style; to appear in Phys. Rev. Let

    Odd Parity and Line Nodes in Non-Symmorphic Superconductors

    Full text link
    Group theory arguments have been invoked to argue that odd parity order parameters cannot have line nodes in the presence of spin-orbit coupling. In this paper we show that these arguments do not hold for certain non-symmorphic superconductors. Specifically, we demonstrate that when the underlying crystal has a twofold screw axis, half of the odd parity representations vanish on the Brillouin zone face perpendicular to this axis. Many unconventional superconductors have non-symmorphic space groups, and we discuss implications for several materials, including UPt3, UBe13, Li2Pt3B and Na4Ir3O8.Comment: 4 page

    Displacement Echoes: Classical Decay and Quantum Freeze

    Get PDF
    Motivated by neutron scattering experiments, we investigate the decay of the fidelity with which a wave packet is reconstructed by a perfect time-reversal operation performed after a phase space displacement. In the semiclassical limit, we show that the decay rate is generically given by the Lyapunov exponent of the classical dynamics. For small displacements, we additionally show that, following a short-time Lyapunov decay, the decay freezes well above the ergodic value because of quantum effects. Our analytical results are corroborated by numerical simulations

    Time evolution and squeezing of the field amplitude in cavity QED

    Full text link
    We present the conditional time evolution of the electromagnetic field produced by a cavity QED system in the strongly coupled regime. We obtain the conditional evolution through a wave-particle correlation function that measures the time evolution of the field after the detection of a photon. A connection exists between this correlation function and the spectrum of squeezing which permits the study of squeezed states in the time domain. We calculate the spectrum of squeezing from the master equation for the reduced density matrix using both the quantum regression theorem and quantum trajectories. Our calculations not only show that spontaneous emission degrades the squeezing signal, but they also point to the dynamical processes that cause this degradation.Comment: 12 pages. Submitted to JOSA

    Conservation laws in the continuum 1/r21/r^2 systems

    Full text link
    We study the conservation laws of both the classical and the quantum mechanical continuum 1/r21/r^2 type systems. For the classical case, we introduce new integrals of motion along the recent ideas of Shastry and Sutherland (SS), supplementing the usual integrals of motion constructed much earlier by Moser. We show by explicit construction that one set of integrals can be related algebraically to the other. The difference of these two sets of integrals then gives rise to yet another complete set of integrals of motion. For the quantum case, we first need to resum the integrals proposed by Calogero, Marchioro and Ragnisco. We give a diagrammatic construction scheme for these new integrals, which are the quantum analogues of the classical traces. Again we show that there is a relationship between these new integrals and the quantum integrals of SS by explicit construction.Comment: 19 RevTeX 3.0 pages with 2 PS-figures include

    Spectral measurements from a tunable, Raman, free electron maser

    Get PDF
    corecore