29 research outputs found

    HIT-COVID, a global database tracking public health interventions to COVID-19

    Get PDF
    The COVID-19 pandemic has sparked unprecedented public health and social measures (PHSM) by national and local governments, including border restrictions, school closures, mandatory facemask use and stay at home orders. Quantifying the effectiveness of these interventions in reducing disease transmission is key to rational policy making in response to the current and future pandemics. In order to estimate the effectiveness of these interventions, detailed descriptions of their timelines, scale and scope are needed. The Health Intervention Tracking for COVID-19 (HIT-COVID) is a curated and standardized global database that catalogues the implementation and relaxation of COVID-19 related PHSM. With a team of over 200 volunteer contributors, we assembled policy timelines for a range of key PHSM aimed at reducing COVID-19 risk for the national and first administrative levels (e.g. provinces and states) globally, including details such as the degree of implementation and targeted populations. We continue to maintain and adapt this database to the changing COVID-19 landscape so it can serve as a resource for researchers and policymakers alike

    COVID-19 and the Unfinished Agenda of VISION 2020.

    No full text

    COVID-19 and the eye: alternative facts The 2022 Bowman Club, David L. Easty lecture

    No full text
    In addition to catastrophic loss of life, and dramatic and unwanted alterations to the daily lives of those left behind, the COVID-19 pandemic has fostered the publication and dissemination of an unprecedented quantity of peer-reviewed medical and scientific publications on a single subject. In particular, the ophthalmic literature is now replete with clinical and laboratory studies on putative eye involvement by SARS-CoV-2, the aetiologic agent of COVID-19. In this review, we critically appraise the published literature on COVID-19, and suggest that the quality of scientific peer review and editorial decision-making also suffered during the COVID-19 pandemic

    Targeting HER2 amplifications in gastric cancer

    No full text
    While multimodality treatments, including neoadjuvant and adjuvant chemotherapy or chemoradiation, have become the global standard of care in patients with locally advanced and metastatic gastric cancers (GCs), long-term outcomes for patients remain poor. This reflects the aggressive tumor biology of GCs and occult nature of the disease, often presenting in its advanced stages, as well as the challenges of developing effective targeted therapy to treat this disease. The Trastuzumab for Gastric Cancer trial demonstrates that the addition of human epidermal growth factor 2 (HER2) monoclonal antibody trastuzumab to standard chemotherapy regimen consisting of 5-fluorouracil (5-FU) or capecitabine with cisplatin results in significant improvement in overall and progression-free survival. Although questions remain regarding the best methods by which to determine HER2 mutation positivity and amplification, through immunohistochemistry or in situ hybridization, and whether trastuzumab is effective for locally advanced, nonmetastatic GC in an adjuvant setting, the trial has led to a surge of clinical trials investigating the potential role of other HER2- and non-HER2-targeted therapies to improve patient outcomes. This review will discuss our current understanding of GC pathogenesis, current available treatments, and the potential impact that targeting HER2 amplifications may have in our efforts to individualize and optimize cancer care in GC individuals

    The best of all worlds: Streptococcus pneumoniae conjunctivitis through the lens of community ecology and microbial biogeography

    No full text
    The study of the forces which govern the geographical distributions of life is known as biogeography, a subject which has fascinated zoologists, botanists and ecologists for centuries. Advances in our understanding of community ecology and biogeography--supported by rapid improvements in next generation sequencing technology--have now made it possible to identify and explain where and why life exists as it does, including within the microbial world. In this review, we highlight how a unified model of microbial biogeography, one which incorporates the classic ecological principles of selection, diversification, dispersion and ecological drift, can be used to explain community dynamics in the settings of both health and disease. These concepts operate on a multiplicity of temporal and spatial scales, and together form a powerful lens through which to study microbial population structures even at the finest anatomical resolutions. When applied specifically to curious strains of conjunctivitis-causing, nonencapsulated Streptococcus pneumoniae, we show how this conceptual framework can be used to explain the possible evolutionary and disease-causing mechanisms which allowed these lineages to colonize and invade a separate biogeography. An intimate knowledge of this radical bifurcation in phylogeny, still the only known niche subspecialization for S. pneumoniae to date, is critical to understanding the pathogenesis of ocular surface infections, nature of host-pathogen interactions, and developing strategies to curb disease transmission. Keywords: biogeography; community ecology; selection; diversification; drift; dispersion; Streptococcus pneumoniae; epidemic conjunctivitis; nonencapsulatedNational Institutes of Health (grant nos. EY024285 and AI083214

    Towards global control of parasitic diseases in the Covid-19 era: One Health and the future of multisectoral global health governance

    No full text
    Human parasitic infections-including malaria, and many neglected tropical diseases (NTDs)-have long represented a Gordian knot in global public health: ancient, persistent, and exceedingly difficult to control. With the coronavirus disease (Covid-19) pandemic substantially interrupting control programmes worldwide, there are now mounting fears that decades of progress in controlling global parasitic infections will be undone. With Covid-19 moreover exposing deep vulnerabilities in the global health system, the current moment presents a watershed opportunity to plan future efforts to reduce the global morbidity and mortality associated with human parasitic infections. In this chapter, we first provide a brief epidemiologic overview of the progress that has been made towards the control of parasitic diseases between 1990 and 2019, contrasting these fragile gains with the anticipated losses as a result of Covid-19. We then argue that the complementary aspirations of the United Nations Sustainable Development Goals (SDGs) and the World Health Organization (WHO)'s 2030 targets for parasitic disease control may be achieved by aligning programme objectives within the One Health paradigm, recognizing the interdependence between humans, animals, and the environment. In so doing, we note that while the WHO remains the preeminent international institution to address some of these transdisciplinary concerns, its underlying challenges with funding, authority, and capacity are likely to reverberate if left unaddressed. To this end, we conclude by reimagining how models of multisectoral global health governance-combining the WHO's normative and technical leadership with greater support in allied policy-making areas-can help sustain future malaria and NTD elimination efforts
    corecore