361 research outputs found

    A two-dimensional mathematical model of percutaneous drug absorption

    Get PDF
    Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1) the flow rate of the drug, (2) the flux and the cumulative amount of drug eliminated into the receptor cell, (3) the steady-state value of the flux, (4) the time to reach the steady-state value of the flux and (5) the optimal value of r, which gives the maximum absorption of the drug. The paper gives valuable information which can be obtained by this two-dimensional model, that cannot be obtained with one-dimensional models. Thus this model improves upon the much simpler one-dimensional models. Some future directions of the work based on this model and the one-dimensional non-linear models that exist in the literature, are also discussed

    One year follow-up of patients with refractory angina pectoris treated with enhanced external counterpulsation

    Get PDF
    BACKGROUND: Enhanced external counterpulsation (EECP) is a non-invasive technique that has been shown to be effective in reducing both angina and myocardial ischemia in patients not responding to medical therapy and without revascularization alternatives. The aim of the present study was to assess the long-term outcome of EECP treatment at a Scandinavian centre, in relieving angina in patients with chronic refractory angina pectoris. METHODS: 55 patients were treated with EECP. Canadian cardiovascular society (CCS) class, antianginal medication and adverse clinical events were collected prior to EECP, at the end of the treatment, and at six and 12 months after EECP treatment. Clinical signs and symptoms were recorded. RESULTS: EECP treatment significantly improved the CCS class in 79 ± 6% of the patients with chronic angina pectoris (p < 0.001). The reduction in CCS angina class was seen in patients with CCS class III and IV and persisted 12 months after EECP treatment. There was no significant relief in angina in patients with CCS class II prior to EECP treatment. 73 ± 7% of the patients with a reduction in CCS class after EECP treatment improved one CCS class, and 22 ± 7% of the patients improved two CCS classes. The improvement of two CCS classes could progress over a six months period and tended to be more prominent in patients with CCS class IV. In accordance with the reduction in CCS classes there was a significant decrease in the weekly nitroglycerin usage (p < 0.05). CONCLUSION: The results from the present study show that EECP is a safe treatment for highly symptomatic patients with refractory angina. The beneficial effects were sustained during a 12-months follow-up period

    Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency

    Get PDF
    Enhanced light harvesting is an area of interest for optimizing both natural photosynthesis and artificial solar energy capture1,2. Iridescence has been shown to exist widely and in diverse forms in plants and other photosynthetic organisms and symbioses3,4, but there has yet to be any direct link demonstrated between iridescence and photosynthesis. Here we show that epidermal chloroplasts, also known as iridoplasts, in shade-dwelling species of Begonia5, notable for their brilliant blue iridescence, have a photonic crystal structure formed from a periodic arrangement of the light-absorbing thylakoid tissue itself. This structure enhances photosynthesis in two ways: by increasing light capture at the predominantly green wavelengths available in shade conditions, and by directly enhancing quantum yield by 5-10% under low-light conditions. These findings together imply that the iridoplast is a highly modified chloroplast structure adapted to make best use of the extremely low-light conditions in the tropical forest understorey in which it is found5,6. A phylogenetically diverse range of shade-dwelling plant species has been found to produce similarly structured chloroplasts7-9, suggesting that the ability to produce chloroplasts whose membranes are organized as a multilayer with photonic properties may be widespread. In fact, given the well-established diversity and plasticity of chloroplasts10,11, our results imply that photonic effects may be important even in plants that do not show any obvious signs of iridescence to the naked eye but where a highly ordered chloroplast structure may present a clear blue reflectance at the microscale. Chloroplasts are generally thought of as purely photochemical; we suggest that one should also think of them as a photonic structure with a complex interplay between control of light propagation, light capture and photochemistry

    Ranks of ideals in inverse semigroups of difunctional binary relations

    Get PDF
    The set Dn of all difunctional relations on an n element set is an inverse semigroup under a variation of the usual composition operation. We solve an open problem of Kudryavtseva and Maltcev (Publ Math Debrecen 78(2):253–282, 2011), which asks: What is the rank (smallest size of a generating set) of Dn? Specifically, we show that the rank of Dn is B(n)+n, where B(n) is the nth Bell number. We also give the rank of an arbitrary ideal of Dn. Although Dn bears many similarities with families such as the full transformation semigroups and symmetric inverse semigroups (all contain the symmetric group and have a chain of J-classes), we note that the fast growth of rank(Dn) as a function of n is a property not shared with these other families

    Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice

    Get PDF
    High sunlight can raise plant growth rates but can potentially cause cellular damage. The likelihood of deleterious effects is lowered by a sophisticated set of photoprotective mechanisms, one of the most important being the controlled dissipation of energy from chlorophyll within photosystem II (PSII) measured as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity remains uncertain because it momentarily reduces the quantum efficiency of photosynthesis. Here we used plants overexpressing the gene encoding a central regulator of NPQ, the protein PsbS, within a major crop species (rice) to assess the effect of photoprotection at the whole canopy scale. We accounted for canopy light interception, to our knowledge for the first time in this context. We show that in comparison to wild-type plants, psbS overexpressors increased canopy radiation use efficiency and grain yield in fluctuating light, demonstrating that photoprotective mechanisms should be altered to improve rice crop productivity

    Time course of airway remodelling after an acute chlorine gas exposure in mice

    Get PDF
    Accidental chlorine (Cl2) gas inhalation is a common cause of acute airway injury. However, little is known about the kinetics of airway injury and repair after Cl2 exposure. We investigated the time course of airway epithelial damage and repair in mice after a single exposure to a high concentration of Cl2 gas. Mice were exposed to 800 ppm Cl2 gas for 5 minutes and studied from 12 hrs to 10 days post-exposure. The acute injury phase after Cl2 exposure (≤ 24 hrs post-exposure) was characterized by airway epithelial cell apoptosis (increased TUNEL staining) and sloughing, elevated protein in bronchoalveolar lavage fluid, and a modest increase in airway responses to methacholine. The repair phase after Cl2 exposure was characterized by increased airway epithelial cell proliferation, measured by immunoreactive proliferating cell nuclear antigen (PCNA), with maximal proliferation occurring 5 days after Cl2 exposure. At 10 days after Cl2 exposure the airway smooth muscle mass was increased relative to controls, suggestive of airway smooth muscle hyperplasia and there was evidence of airway fibrosis. No increase in goblet cells occurred at any time point. We conclude that a single exposure of mice to Cl2 gas causes acute changes in lung function, including pulmonary responsiveness to methacholine challenge, associated with airway damage, followed by subsequent repair and airway remodelling

    The Effect of Pre-Injury Anti-Platelet Therapy on the Development of Complications in Isolated Blunt Chest Wall Trauma: A Retrospective Study

    Get PDF
    INTRODUCTION: The difficulties in the management of the blunt chest wall trauma patient in the Emergency Department due to the development of late complications are well recognised in the literature. Pre-injury anti-platelet therapy has been previously investigated as a risk factor for poor outcomes following traumatic head injury, but not in the blunt chest wall trauma patient cohort. The aim of this study was to investigate pre-injury anti-platelet therapy as a risk factor for the development of complications in the recovery phase following blunt chest wall trauma. METHODS: A retrospective study was completed in which the medical notes were analysed of all blunt chest wall trauma patients presenting to a large trauma centre in Wales in 2012 and 2013. Using univariate and multivariable logistic regression analysis, pre-injury platelet therapy was investigated as a risk factor for the development of complications following blunt chest wall trauma. Previously identified risk factors were included in the analysis to address the influence of confounding. RESULTS: A total of 1303 isolated blunt chest wall trauma patients presented to the ED in Morriston Hospital in 2012 and 2013 with complications recorded in 144 patients (11%). On multi-variable analysis, pre-injury anti-platelet therapy was found to be a significant risk factor for the development of complications following isolated blunt chest wall trauma (odds ratio: 16.9; 95% confidence intervals: 8.2-35.2). As in previous studies patient age, number of rib fractures, chronic lung disease and pre-injury anti-coagulant use were also found to be significant risk factors. CONCLUSIONS: Pre-injury anti-platelet therapy is being increasingly used as a first line treatment for a number of conditions and there is a concurrent increase in trauma in the elderly population. Pre-injury anti-platelet therapy should be considered as a risk factor for the development of complications by clinicians managing blunt chest wall trauma

    Multiple organism algorithm for finding ultraconserved elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ultraconserved elements are nucleotide or protein sequences with 100% identity (no mismatches, insertions, or deletions) in the same organism or between two or more organisms. Studies indicate that these conserved regions are associated with micro RNAs, mRNA processing, development and transcription regulation. The identification and characterization of these elements among genomes is necessary for the further understanding of their functionality.</p> <p>Results</p> <p>We describe an algorithm and provide freely available software which can find all of the ultraconserved sequences between genomes of multiple organisms. Our algorithm takes a combinatorial approach that finds all sequences without requiring the genomes to be aligned. The algorithm is significantly faster than BLAST and is designed to handle very large genomes efficiently. We ran our algorithm on several large comparative analyses to evaluate its effectiveness; one compared 17 vertebrate genomes where we find 123 ultraconserved elements longer than 40 bps shared by all of the organisms, and another compared the human body louse, <it>Pediculus humanus humanus</it>, against itself and select insects to find thousands of non-coding, potentially functional sequences.</p> <p>Conclusion</p> <p>Whole genome comparative analysis for multiple organisms is both feasible and desirable in our search for biological knowledge. We argue that bioinformatic programs should be forward thinking by assuming analysis on multiple (and possibly large) genomes in the design and implementation of algorithms. Our algorithm shows how a compromise design with a trade-off of disk space versus memory space allows for efficient computation while only requiring modest computer resources, and at the same time providing benefits not available with other software.</p
    • …
    corecore