1,088 research outputs found

    Citizen science and wildlife disease surveillance

    Get PDF
    Achieving effective wildlife disease surveillance is challenging. The incorporation of citizen science (CS) in wildlife health surveillance can be beneficial, particularly where resources are limited and cost-effectiveness is paramount. Reports of wildlife morbidity and mortality from the public facilitate large-scale surveillance, both in time and space, which would otherwise be financially infeasible, and raise awareness of incidents occurring on privately-owned land. CS wildlife disease surveillance schemes benefit scientists, the participating public and wildlife alike. CS has been employed for targeted, scanning and syndromic surveillance of wildlife disease. Whilst opportunistic surveillance is most common, systematic observations enable the standardization of observer effort and, combined with wildlife population monitoring schemes, can allow evaluation of disease impacts at the population level. Near-universal access to digital media has revolutionized reporting modalities and facilitated rapid and economical means of sharing feedback with participants. Here we review CS schemes for wildlife disease surveillance and highlight their scope, benefits, logistical considerations, financial implications and potential limitations. The need to adopt a collaborative and multidisciplinary approach to wildlife health surveillance is increasingly recognized and the general public can make a significant contribution through CS

    Mortality associated with avian reovirus infection in a free-living magpie (Pica pica) in Great Britain

    Get PDF
    Avian reoviruses (ARVs) cause a range of disease presentations in domestic, captive and free-living bird species. ARVs have been reported as a cause of significant disease and mortality in free-living corvid species in North America and continental Europe. Until this report, there have been no confirmed cases of ARV-associated disease in British wild birds

    Apparent absence of Batrachochytrium salamandrivorans in wild urodeles in the United Kingdom

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Whether an infectious disease threat to wildlife arises from pathogen introduction or the increased incidence of an already-present agent informs mitigation policy and actions. The prior absence of a pathogen can be difcult to establish, particularly in free-living wildlife. Subsequent to the epidemic emergence of the fungus, Batrachochytrium salamandrivorans (Bsal), in mainland Europe in 2010 and prior to its detection in captive amphibians in the United Kingdom (UK), we tested archived skin swabs using a Bsal-specifc qPCR. These samples had been collected in 2011 from 2409 wild newts from ponds across the UK. All swabs were negative for Bsal. Bayesian hierarchical modelling suggests that Bsal was absent from, or present at very low levels in, these ponds at the time of sampling. Additionally, surveillance of newt mortality incidents, 2013–2017, failed to detect Bsal. As this pathogen has been shown to be widespread in British captive amphibian collections, there is an urgent need to raise awareness of the importance of efective biosecurity measures, especially amongst people with captive amphibians, to help minimise the risk of Bsal spreading to the wild. Continued and heightened wild amphibian disease surveillance is a priority to provide an early warning system for potential incursion eventsDepartment for Environment, Food and Rural Affairs (DEFRA)Animal & Plant Health Agency (APHA

    Detection of the European epidemic strain of Trichomonas gallinae in finches, but not other non-columbiformes, in the absence of macroscopic disease

    Get PDF
    Finch trichomonosis is an emerging infectious disease affecting European passerines caused by a clonal strain of Trichomonas gallinae. Migrating chaffinches (Fringilla coelebs) were proposed as the likely vector of parasite spread from Great Britain to Fennoscandia. To test for such parasite carriage, we screened samples of oesophagus/crop from 275 Apodiform, Passeriform and Piciform birds (40 species) which had no macroscopic evidence of trichomonosis (i.e. necrotic ingluvitis). These birds were found dead following the emergence of trichomonosis in Great Britain, 2009-2012, and were examined post-mortem. Polymerase chain reactions were used to detect (ITS1/5.8S rRNA/ITS2 region and single subunit rRNA gene) and to subtype (Fe-hydrogenase gene) T. gallinae. Trichomonas gallinae was detected in six finches (three chaffinches, two greenfinches (Chloris chloris) and a bullfinch (Pyrrhula pyrrhula)). Sequence data had 100% identity to the European finch epidemic A1 strain for each species. While these results are consistent with finches being vectors of T. gallinae, alternative explanations include the presence of incubating or resolved T. gallinae infections. The inclusion of histopathological examination would help elucidate the significance of T. gallinae infection in the absence of macroscopic lesions

    Simulating actuator energy consumption for trajectory optimisation

    Get PDF
    This work aims to construct a high-speed simulation tool which is used to quantify the dynamic actuator power consumption of an aircraft in flight, for use within trajectory optimisation packages. The purpose is to evaluate the energy penalties of the flight control actuation system as an aircraft manoeuvre along any arbitrary trajectory. The advantage is that the approximations include major transient properties which previous steady state techniques could not capture. The output can be used to provide feedback to a trajectory optimisation process to help it compute the aircraft level optimality of any given flight path. The tool features a six degree of freedom dynamic model of an aircraft which is combined with low frequency functional electro-mechanical actuator models in order to estimate the major transient power demands. The actuator models interact with the aircraft using an aerodynamic load estimator which generates load forces on the actuators that vary as a function of flight condition and control surface demands. A total energy control system is applied for longitudinal control and a total heading control system is implemented to manage the lateral motion. The outer loop is closed using a simple waypoint following guidance system with turn anticipation and variable turn radius control. To test the model, a simple trajectory analysis is undertaken which quantifies a heading change executed with four different turn rates. The tool shows that the actuation system requires 12.8 times more electrical energy when performing a 90° turn with a radius of 400 m compared to 1000 m. A second test is performed to verify the model’s ability to track a longer trajectory under windy conditions

    Herpesvirus skin disease in free-living common frogs Rana temporaria in Great Britain

    Get PDF
    Infectious disease is a significant driver of global amphibian declines, yet despite this, relatively little is known about the range of pathogens that affect free-living amphibians. Recent detection of the tentatively named Ranid herpesvirus 3 (RHV3), associated with skin disease in free-living common frogs Rana temporaria in Switzerland, helps to address this paucity in knowledge, but the geographic distribution and epidemiology of the pathogen remains unclear. Syndromic surveillance for ranid herpesvirus skin disease was undertaken throughout Great Britain (GB), January 2014 to December 2016. Reports of common frogs with macroscopic skin lesions with a characteristic grey appearance were solicited from members of the public. Post-mortem examination was conducted on one affected frog found dead in 2015 at a site in England. In addition, archived samples from an incident involving common frogs in England in 1997 with similar macroscopic lesions were further investigated. Transmission electron microscopy identified herpes-like virions in skin lesions from both the 1997 and 2015 incidents. RHV3, or RHV3-like virus, was detected in skin lesions from the 2015 case by PCR and sequencing. Our findings indicate that herpesvirus skin disease is endemic in common frogs in GB, with widespread distribution at apparently low prevalence. Further research into the role of host immunity, virus latency and the significance of infection to host survival is required to better understand the epidemiology and impact of cutaneous herpesvirus infections in amphibian populations

    Transient capacitance measurements of deep level defects introduced in y-ray compensated germanium by long-term annealing at room temperature.

    Get PDF
    Deep level transient spectroscopy (DLTS) has been applied to defect centres in γ-ray compensated germanium that has been subjected to long-term annealing at room temperature. Deep donor levels (Ec - 0.36 eV Ec - 0.20 eV) have been observed for the first time; annealing at 675ºC for 3 hours increased their concentration in proportion to the free carrier density indicating stable defect-impurity complexes. Recently irradiated samples from the original material have not shown these levels. The results support Russian work on the compensation mechanism - the formation of electically inactive vacancy-donor complexes

    Habitat-use influences severe disease-mediated population declines in two of the most common garden bird species in Great Britain

    Get PDF
    The influence of supplementary feeding of wildlife on disease transmission and its consequent impacts on population dynamics are underappreciated. In Great Britain, supplementary feeding is hypothesised to have enabled the spread of the protozoan parasite, Trichomonas gallinae, from columbids to finches, leading to epidemic finch trichomonosis and a rapid population decline of greenfinch (Chloris chloris). More recently, chaffinch (Fringilla coelebs), has also declined markedly from the second to fifth commonest bird in Britain. Using citizen science data, we show that both declines were driven primarily by reduced adult survival, with the greatest reductions occurring in peri-domestic habitats, where supplementary food provision is common. Post-mortem examinations showed a proportional increase in chaffinch trichomonosis cases, near-contemporaneous with its population decline. Like greenfinches, chaffinches often use supplementary food, but are less associated with human habitation. Our results support the hypothesis that supplementary feeding can increase parasite transmission frequency within and between common species. However, the dynamics behind resultant population change can vary markedly, highlighting the need for integrating disease surveillance with demographic monitoring. Other species susceptible to T. gallinae infection may also be at risk. Supplementary feeding guidelines for wildlife should include disease mitigation strategies to ensure that benefits to target species outweigh risks

    Chlamydiosis in British Garden Birds (2005–2011): Retrospective Diagnosis and Chlamydia psittaci Genotype Determination

    Get PDF
    The significance of chlamydiosis as a cause of mortality in wild passerines (Order Passeriformes), and the role of these birds as a potential source of zoonotic Chlamydia psittaci infection, is unknown. We reviewed wild bird mortality incidents (2005–2011). Where species composition or post-mortem findings were indicative of chlamydiosis, we examined archived tissues for C. psittaci infection using PCR and ArrayTube Microarray assays. Twenty-one of 40 birds tested positive: 8 dunnocks (Prunella modularis), 7 great tits (Parus major), 3 blue tits (Cyanistes caeruleus), 2 collared doves (Streptopelia decaocto, Order Columbiformes), and 1 robin (Erithacus rubecula). Chlamydia psittaci genotype A was identified in all positive passerines and in a further three dunnocks and three robins diagnosed with chlamydiosis from a previous study. Two collared doves had genotype E. Ten of the 21 C. psittaci-positive birds identified in the current study had histological lesions consistent with chlamydiosis and co-localizing Chlamydia spp. antigens on immunohistochemistry. Our results indicate that chlamydiosis may be a more common disease of British passerines than was previously recognized. Wild passerines may be a source of C. psittaci zoonotic infection, and people should be advised to take appropriate hygiene precautions when handling bird feeders or wild birds

    Streptococcus pyogenes infection in a free-living European hedgehog (Erinaceus europaeus)

    Get PDF
    Streptococcus pyogenes, a common pathogen of humans, was isolated from the carcass of a free-living European hedgehog (Erinaceus europaeus) found in northern England in June 2014. The animal had abscessation of the deep right cervical lymph node, mesenteric lymph nodes and liver. The S. pyogenes strain isolated from the lesions, peritoneal and pleural cavities was characterised as emm 28, which can be associated with invasive disease in humans. This is the first known report of S. pyogenes in a hedgehog and in any free-living wild animal that has been confirmed by gene sequencing. As close associations between wild hedgehogs and people in England are common, we hypothesise that this case might have resulted from anthroponotic infection
    • …
    corecore