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Simulating actuator energy consumption
for trajectory optimisation
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Abstract

This work aims to construct a high-speed simulation tool which is used to quantify the dynamic actuator power

consumption of an aircraft in flight, for use within trajectory optimisation packages. The purpose is to evaluate the

energy penalties of the flight control actuation system as an aircraft manoeuvre along any arbitrary trajectory.

The advantage is that the approximations include major transient properties which previous steady state techniques

could not capture. The output can be used to provide feedback to a trajectory optimisation process to help it compute

the aircraft level optimality of any given flight path.

The tool features a six degree of freedom dynamic model of an aircraft which is combined with low frequency functional

electro-mechanical actuator models in order to estimate the major transient power demands. The actuator models interact

with the aircraft using an aerodynamic load estimator which generates load forces on the actuators that vary as a function

of flight condition and control surface demands. A total energy control system is applied for longitudinal control and a total

heading control system is implemented to manage the lateral motion. The outer loop is closed using a simple waypoint

following guidance system with turn anticipation and variable turn radius control. To test the model, a simple trajectory

analysis is undertaken which quantifies a heading change executed with four different turn rates. The tool shows that the

actuation system requires 12.8 times more electrical energy when performing a 90� turn with a radius of 400 m compared

to 1000 m. A second test is performed to verify the model’s ability to track a longer trajectory under windy conditions.
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Introduction

A simulation tool is developed in this paper which
quantifies dynamic actuator power consumption
during waypoint-following aircraft manoeuvres of a
small 3.6m wingspan unmanned aerial vehicle (UAV).
It improves upon steady state methods for estimating
actuator power consumption (e.g. duty cycle approxi-
mations) by including the major electrical and mechan-
ical actuator dynamics.

This work contributes to an effort to achieve
fast aircraft architecture simulations for trajectory
optimisation; capable of modelling complex dynamic
multi-system situations. One example is navigating an
icing cloud. Depending on the severity of the condi-
tions, the pilot is presented with the decision of flying
through the weather system with anti-icing systems
engaged or to navigate around or over it. Each path
will have its own effect on the energy demands of the
engines, environmental control system, ice protection
and flight controls.

Many of these scenarios can be simulated with
simple point mass models since they are dominantly

based on altitude, airspeed and environmental condi-
tions. The same cannot be said for the primary flight
control actuation system because the aircraft dynamic
motion directly relates to the flight control power con-
sumption. To simulate the transient behaviour of all
three primary control effectors, a six degree of free-
dom (6-DOF) dynamics model is required to generate
control surface deflection commands.

This work contributes to the field of aircraft trajec-
tory optimisation, by evolving the standard aircraft
point mass performance models to simulate all six
degrees of freedom and incorporating actuation
system models. When combined with other airframe
system, engine and secondary power generation
models the fuel burn for thrust and off-takes can be
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estimated while following dynamic three-dimensional
flight trajectories.

The method demonstrates the capability of using
modern, high performance desktop computers to
simulate complex aircraft and systems interaction.
The end result (which is currently lacking accurate
engine and electrical generation models) is a tool
which allows the 6-DOF flight dynamic simulation
of an aircraft, whilst also producing estimates of
instantaneous electrical power as the aircraft flies
and manoeuvres.

The block diagram of the tool is shown in Figure 1.
At the base of the simulation is the aircraft model,
which represents the flight dynamics of the vehicle.
The aircraft is controlled using a total energy control
system with trajectory guidance. In between the con-
trol system and the aircraft lies the actuator models;
often these are first- or second-order transfer function
models, but in this case the motor and ball screw
properties of an electromechanical (EMA) actuator
are modelled. The load force on the actuators is
derived from an aerodynamic load estimator, which
takes into account conditions such as altitude, air-
speed and control surface geometry in generating
estimates.

When supplemented with other energy quantifica-
tion, emission and air traffic management models, the
tool forms part of the wider dynamic performance
model shown in Figure 2, which estimates multiple
penalties of the aircraft and its planned trajectory. In
the authors’ previously published work1 high-speed

electro-hydrostatic and servohydraulic actuator
models are constructed which can replace the EMA
unit in this work. This allows a wider range of actu-
ation technologies to be studied, however for the scope
of this paper this is not deemed suitable due to the
small size of the aircraft.

This paper investigates a single use of the tool;
quantifying the energy consumed by the actuators
for a series of trajectories. The trajectories are to be
simple banked turns between two straight line flight
path segments, so that the results are easily verifiable.

Despite high execution speed being a primary goal
in the creation of the model, it may still be too slow
for online trajectory optimisation problems. Ideally, a
high-speed optimiser and point mass aircraft model
would be used to generate potential trajectories
which are then used as inputs to the 6-DOF with sys-
tems model. This tool then serves as a post processing
package which ‘flies’ along the route, producing actu-
ator power consumption data which could not be gen-
erated using the point mass model.

Model definition

Actuator models

The actuator represented in this work is an EMA
type, taken from the authors’ previously published
work1 and simplified for faster simulation. The mod-
elling diagram for the actuator is shown in Figure 3; it
consists of a motor driving a load through a gearbox
and lead screw combination with total ratio p. The
equivalent schematic in Figure 4 shows how the gear-
box and screw converts the rotational position �m
from motor M to translational position xm. The rela-
tive linear positions of the lead screw nut and load
mass define the force developed by the material stiff-
ness and applied to the load. The EMA friction is
represented through a viscous damper referred to
the actuator case, although additional nonlinear
modes can be added as well. Importantly, the force
applied to the actuator by the load and friction is
reflected back through the gearing to the motor,
allowing the power consumption and effects of load-
ing to be studied.

The model is reduced from the referenced docu-
ment (which was based on a 2-DOF EMA model
provided by Du et al.2) to only include a single
DOF. This means the model does not provide accur-
ate simulation of the high frequency response of the
actuator, since the spring-damper dynamics of the
lead screw material are ignored. Consequently
the model is only valid when the frequency of excita-
tion is below the actuators’ internal resonances. Since
the purpose of the tool is a functional dynamic per-
formance model rather than for controller design it is
appropriate for the task. The models’ predictions are
not intended to precisely match experimental hard-
ware dynamics, because their purpose is to produce

Figure 1. Block diagram of the complete aircraft-actuator

simulation package.
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fast energy consumption estimates to assess different
trajectories for global optimality.

Energy losses in the system occur in the electrical
(copper and power electronic losses), magnetic (iron
and eddy current losses) and mechanical (friction)
domains. Friction in a system is important for
power consumption modelling because it is the dom-
inant source of mechanical losses in the motor and
gearing. Ideally friction coefficients are obtained
experimentally, but since this is not available an ana-
lytical technique is used to estimate viscous friction.3

Electrical and magnetic losses are combined into one
equivalent resistance and selected such that the model
has a peak efficiency of around 30%. Such approxi-
mations can easily be improved by substituting add-
itional hardware specific data if it is available.

Validation for the model is achieved qualitatively
by writing scripts to assess the open loop performance
of the actuator across a range of load forces; the
result of which is presented in Figure 5. By recognis-
ing that an EMA can be considered for the most part
as a motor and gearbox combination, the electrical
and mechanical performance variation with load is
expected to be dependent on the motor itself (pro-
viding the ball screw is of high quality).

The performance data shown in Figure 5 is based
on a Portescap 17S78-208 motor4 and is recognisable
as having speed, current, power and efficiency per-
formance which is typical of a DC motor. The
motor is a commercially available unit which provides

Figure 2. Block diagram of the wider aircraft trajectory optimisation package which this work is a part of.

Figure 4. Schematic diagram of EMA used for power

consumption modelling.

Figure 3. Modelling diagram of an electromechanical

actuator.
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a good datasheet for parameterising a model, at the
cost of being constrained by the existing design and
power rating. It is used for all control surfaces and so
it is expected to see some ‘overdesigned’ characteris-
tics in operation.

The linear rate decreases linearly from a maximum
at zero load to a minimum of zero at the stall force.
There is a linear relationship between current and
force which is defined by the torque constant and
gear ratio. The power delivered is a product of
speed and force, which shows a parabolic character-
istic with a maximum at 50% load and x crossings at
zero and stall loads. DC motors are most efficient at
high speed (i.e. low torque), because the dominating
i2R heating losses are low. Even at the highest speed,
the friction losses are much smaller than the resistive
losses are at stall. This can be seen in the figure, where
the efficiency increases with decreasing force (and
increasing speed) up to a maximum at approximately
one-third of the maximum load. When the load force
decreases below this the output power and hence effi-
ciency tend towards zero.

Servo-controller. It is important to assess the actuators
(motor and mechanical parts) and servo-controller
(power electronics and control) separately. The motor
and mechanical parts are designed to meet aero-
dynamic performance requirements, while the servo-
drive is required to meet the motor requirements. The
aim of this work is to focus on meeting aircraft control
requirements, so most results are presented without the
inclusion of the servo-drive losses to avoid masking the
small dynamic powers.

Small servo-drives have a continuous current
draw even when idle, which should be considered
for aircraft architecture sizing and aircraft level tra-
jectory analysis. To reflect the inclusion of (simplified)
servo-control losses, a constant 0.1W drain per servo-
controller is assumed, applied to five actuators. The
results for this assessment will be shown only as a
relative overall energy consumption comparison
towards the end.

Aerodynamic load estimation and Control
Surface Model

Control surface aerodynamic load estimation can be a
complex problem which is often best derived from
computational fluid dynamic or wind tunnel investiga-
tions. This becomes particularly true at low Reynolds
numbers where behaviour is difficult to predict. In
order to obtain preliminary aeroload estimates, the
same code is applied which has previously been used
in the authors’ work on transport aircraft.1 This soft-
ware is a MATLAB programmed version of the
method published by Roskam5 and used by Scholz6

for preliminary actuator sizing. The limitation of this
work is that it does not provide data for Reynolds
numbers below 1E6. At the flight condition studied
in this paper, the Reynolds number for the tail is
around 2E5 and 3E5 for the ailerons. Instead of apply-
ing a new method to derive hinge moment coefficients,
it has decided to limit the Reynolds number to a min-
imum of 1E6 and to check the hinge moment estimates
fell within the load capacity of the actuators. For this
reason the numerical values of the force, power and
energy results are not considered to be accurate but
the trends formed are representative of the real aircraft.

With the above approximation in mind, the hinge
moment coefficients with respect to angle of attack and
surface deflection are computed from the lookup tables
provided by Roskam and used to calculate an overall
hinge moment coefficient using equation (1)

Ch ¼ Ch��þ Ch�� ð1Þ

The hingemoment torque THM is then calculated
using equation (2), before being converted to a force
by using the control surface moment arm. It should be
noted that these two formulae must be computed at
every time step to generate transient aeroloads on the
control surfaces, but the derivatives Ch� and Ch�

remain constant

THM ¼ ChqAw �c ð2Þ

Once the load forces on the actuators have been
estimated, the linear actuators’ outputs are converted
to rotational motion of the control surfaces through a
moment arm. The actuator installation is shown in
Figure 6.

The control surface angle � is calculated using the
cosine rule in equation (3)

� ¼ cos�1
b2 � c2 � a2

�2ac

� �
� �0 ð3Þ

Aircraft model (6-DoF)

The aircraft model used in this work represents the
Aerosonde weather reconnaissance and remote

Figure 5. Open loop linear rate, current, power and effi-

ciency against load force at 6 V DC supply voltage.
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sensing UAV.7,8 Aerosonde is a twin-boom, inverted
v-tail UAV of wingspan 3.6m and gross mass 17 kg.
It has a payload capacity of 3.5 kg and 75W. It is
modelled as a variable mass, rigid body object
which experiences aerodynamic, propulsive and gravi-
tational forces. The motion of the aircraft is defined
by the position and velocity of its centre of gravity,
along with the orientation angles and body rates of a
body fixed axis system with respect to an inertial ref-
erence frame. Newton’s second law is used to describe
the linear and angular motion of the aircraft using
equations (4) and (5), which are based on the deriv-
ation provided by Beard and McLain8

dVb

dt
¼

1

m
F� xb � Vb ð4Þ

dxb

dt
¼

1

J
M� xb � Jxb½ � ð5Þ

The assumptions made in constructing the 6-DOF
model are the following

. The atmosphere model is the International
Standard Atmosphere, considered at rest relative
to the Earth.

. Temperature, pressure and density are considered
to be a function of altitude.

. The aircraft is considered as rigid and with a
right-left plane of symmetry.

. Forces acting on the centre of gravity are the aero-
dynamic forces, thrust and weight.

. Gravitational acceleration is considered as a con-
stant 9.81m/s2.

The force and moment vectors are computed using
aerodynamic coefficients and an engine model for
the Aerosonde provided in the textbook by Beard
and McLain.8 Equations (4) and (5) are implemented
in Simulink using Aerospace Blockset components for
computational efficiency, where the outputs are inte-
grated twice to obtain linear and angular velocities

and positions. The result is an open loop Aerosonde
model which executes many times faster than real time
and can provide control surface position commands
to the actuator models.

Automatic flight control system

One fundamental problem with conducting aircraft
performance analyses using a regular 6-DOF (none-
inverse type) is that the model requires a flight control
system (FCS) to ensure it follows the chosen trajec-
tory. A forward 6-DOF model uses aerodynamic coef-
ficients, driven by the control inputs to generate forces
and moments which are used by the equations of
motion to derive time varying attitudes and positions
of the aircraft. In order to control the position of
the aircraft, the loops must be closed to obtain good
control of the inputs in order to manoeuvre the air-
craft as required.

This is classically achieved using a selection of
single input–single output (SISO) controllers which
control a single aircraft DOF with a single control
effector. This technique is widely used, but as demon-
strated by Lambregts;9 this control scheme produces
unnecessary movement of the control inputs because
a real aircraft has strongly coupled axes of motion
which are not naturally taken into account.
Achieving a level acceleration or constant speed
climb from steady level trimmed flight requires syn-
chronised changes in both the throttle and elevator
positions, due to the cross coupling between the two
controls (shown in Figure 7).

In a classical autopilot the elevator and throttle
controls are implemented with two separate loops
which have no knowledge of each other’s states.
Lambregts developed an integrated multiple input–
multiple output (MIMO) total energy control system
(TECS) which sought to unite throttle and elevator
controls into a single aircraft energy state controller.9

Since the referenced document provides an excellent
explanation and derivation of the equations, they
will not be replicated here. In summary, the aircraft’s
total energy (gravitational potential energyþ kinetic

Figure 6. Actuator installation schematic.

Figure 7. Longitudinal energy of a trimmed aircraft in flight.10
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energy) is controlled using the throttle, while the ele-
vator is used to transfer energy between the two
forms. The technique has been successfully trialled
on several aircraft from UAVs (NASA Condor10),
to manned general aviation aircraft11 and large trans-
port aircraft (Boeing 737).12

In an analogous fashion, the lateral motion can be
controlled using energy principles in a total heading
control system (THCS) as shown initially by Bruzzini
on an F-15.13 This synchronises the ailerons and
rudder to allow the aircraft to execute coordinated
manoeuvres using a MIMO structure, facilitating
banked turns at constant sideslip or sideslip changes
at constant heading. The former is useful in normal
manoeuvres for keeping the sideslip angle at zero
while changing heading between flight path segments.
The latter is useful during crosswind landings or in the
event of asymmetric flight due to engine failure. It
should be noted particularly that all these functions
are provided by a single MIMO control structure with
THCS; a classic SISO autopilot would require several
layers of controllers with logic switching to accom-
plish these tasks satisfactorily.

TECS/THCS has two main benefits to this work
which will be discussed in the following paragraphs:

. Increased simulation speed achievable when using
a 6-DOF model.

. Point mass representation of the aircraft dynamics
at the outer loop inputs/outputs.

When a 6-DOF model is controlled using TECS/
THCS, larger timesteps can be used for the numerical
solver used to simulate the model. This is directly
related to the reduction in root mean square (rms)
surface deflections noted in the prior work by
Bruce.14 The author found, for example, a reduction
in elevator activity in turbulence from 0.81� rms to
0.16� rms for a simulation of a Boeing 737 aircraft
(without penalising velocity or altitude tracking).
Lower activity translates to less hunting as the various
SISO control loops fight each other and significantly
reduces oscillations. From a speed of execution per-
spective, TECS/THCS allows for reliable, high-speed
simulation of a controlled 6-DOF model across its
flight envelope.

The second benefit of TECS/THCS to this work is
the masking of high frequency aircraft dynamics
behind low bandwidth outer control loops. As noted
by Faleiro and Lambregts,15 this behaviour lends
itself admirably to integration with flight management
computers which consider trajectory management as a
point mass kinematic problem. The outer loops of
TECS/THCS are derived from point mass kinematic
equations, making TECS/THCS an ideal candidate
for trajectory following whilst ensuring the aircraft
conforms to airspace safety requirements. Simply
stated, a TECS/THCS control system with suitably
designed aircraft specific inner loops will follow any

trajectory commanded of it with less tracking error
and control effort than simple SISO controllers (pro-
viding the desired trajectory has achievable climb and
turn rates). Since actuator power consumption can
depend heavily on the controllers used, TECS/
THCS is selected as the ideal FCS to follow trajec-
tories with the minimum control energy.

Guidance system

All experiments are conducted with the FCS loops
closed, such that the aircraft will maintain any com-
manded speed, altitude, heading and sideslip angles
(within the aircraft’s flight envelope). In order to
investigate manoeuvres systematically, it is important
to provide some guidance algorithm to enact man-
oeuvres consistently. This can be as simple as com-
manding a step change in heading at a fixed instant in
time during the simulation; the problem with this is
shown in Figure 8 where the aircraft can clearly be
seen to exit the heading change manoeuvre along dif-
ferent parallel ground tracks as a result of different
turn rates. The figure is generated by disconnecting
the guidance controller and triggering a heading
change after 1 km of flight. This effect is quite obvious
but it makes it difficult to compare numerical results
since aircraft following each route will exit the man-
oeuvre on a distinctly different ground track; not
something which is very useful when considering a
transport aircraft that needs to depart from point A
and arrive at point B or a UAV which has to traverse
a specific area on the ground.

This behaviour is intuitive; the solution is to define
a ‘fly-by’ waypoint some distance in front of the air-
craft starting point which can be used to define a spe-
cific entry and exit flight path. The turn is then
initiated at a distance d from the waypoint, which is
computed from the aircraft’s forward speed and the
turn rate; leading to a ‘filleted’ turn between two flight
path segments (or airways). To achieve turns with no
overshoot requires knowledge of the aircraft ‘time to
bank’ (TTB) which is essentially a measure of how
long (in time or distance) before reaching the turn
point d that the aircraft must start banking so that
it crosses d at the desired bank angle/turn rate. In this
work TTB compensation is left out for simplicity and
to avoid distorting the results by adding layers of
complexity induced by the guidance algorithm.

The guidance algorithm for this task is formulated
from the straight segment and orbit following text-
book method provided by Beard and McLain.8 This
algorithm defines the manoeuvres using the turn
radius, by computing the indentifying coordinates of
a tangential circular orbit connecting two intersecting
straight waypoint paths. The straight paths are
defined beforehand to specify the route to be fol-
lowed. Transitions between the different manoeuvre
points are detected using half plane triggering to
ensure robustness, avoiding the pitfalls of radial
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waypoint detection methods in small UAVs. The
complete guidance algorithm is programmed as a sta-
temachine using Simulink’s Stateflow software, which
compiles the code to allow fast execution and natural
integration with the Simulink based aircraft model.

A demonstration of the guidance algorithm is
shown in Figure 9 for a 90� turn. The aircraft evi-
dently anticipates the prescribed turn rates and initi-
ates the turn at such a distance from the first waypoint
(located at (5,0)) in order to intercept the next flight
path segment with minimum error. This is a clear
advantage of the method since it allows forward

simulation models (such as those used in this paper)
with controllers to be assessed while tracking any
achievable trajectory.

Simulation method

The simulation experiment performed in this paper is
designed to mimic the application of the simulation
framework to a simple trajectory optimisation prob-
lem. An aircraft needs to turn 90� to the left and has
several options of which path to follow to get there.
For this paper, the trajectories to be assessed are
selected to be a banked turn at a series of different
turn rates.

The method is structured in the following way.
A single aircraft model is created and equipped with
a TECS/THCS FCS and waypoint guidance system.
This model is self contained, can be executed on its
own and will follow a single list of waypoints.

The guidance algorithm is supplied sequentially
with each possible route and the model is executed
using the ode23tb solver. The aircraft and actuator
state data from each trajectory is stored for later pro-
cessing. Once every route has been performed the data
is combined and plot to perform a visual analysis.

To expand on the first experiment and demonstrate
the operation of the model in more realistic situations,
a longer flight with the addition of a Dryden gust
model is conducted.

The key requirements for high-speed simulation are:

. Use of solvers for stiff systems; the bandwidth of
the actuator motor controls are significantly higher
than that of the slow aeroplane dynamics.

. Long maximum timesteps for the variable step
solver (ode23tb with a 1-s max. timestep is used).

. Careful adjustment of solver absolute and relative
tolerance to allow automatic adjustment to long
timesteps in periods of low activity (straight seg-
ments) and suitably small timesteps during periods
of high activity (during manoeuvres).

. Vectorise multiple actuators into a single model.

. Minimise control oscillations from well-tuned
controllers.

. Use of MATLAB’s Parallel Computing parfor loop
in the main program control loop so one complete
model/trajectory can be computed on each proces-
sor core/computer.

. Initialise model from a trimmed operating point
for all states.

To expand on the last point; the aircraft model is
trimmed without FCS or actuator models for the
development stage while the flight controller, actu-
ators and aeroload estimator are integrated.
This trims the aircraft inputs and states so it is
flying straight and level at a chosen altitude and air-
speed. After integration is complete, continuing to
initialise the complete model this way causes a

Figure 9. Trajectories flown by aircraft turning 90
�

at a range

of heading rates (with guidance system).

Figure 8. Trajectories flown by aircraft turning 90� at a range

of heading rates (with no guidance system).
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severe slowdown at the start of the simulation. This is
a result of the actuator models initialising with zero
load on them; motors stationary and with no torque
being generated. At the same instant in time (t¼ 0),
the aeroload estimator produces a non-zero load force
on the ailerons, elevator and rudder (if sideslip angle
� 6¼ 0) which requires a step change in motor torque
requirement. The resulting damped oscillations that
occur as the actuator controllers track towards their
new (loaded) steady state operating points requires
small timesteps to capture the motion.

To avoid this, Simulink’s operating point search
function is used to capture the values of all states
after a long simulation time (1000 s is used) which
are then used to initialise the complete model from a
trimmed operating point. For this part of the process
the guidance system is disconnected and the aircraft
model is initialised from the previous state of trim. By
giving the simulation a long time to run, the FCS
maintains the aircraft flying at the previously specified
flight condition whilst the actuators adjust to the
steady state loaded conditions. Note that for variable
mass aircraft models the fuel mass should be fixed to
ensure that the state values captured at the end of the
simulation are valid for the aircraft mass at the start
of the simulation. Some values must be manually set
to zero, such as the aircraft position and actuator
energy integrators, for correct operation during the
main experiment.

Results

The first plot in Figure 10 describes the variation in
attitudes required to execute the various turn rate
manoeuvres. The bank angle increases in proportion
to the increasing turn rate up to a maximum of 12�

and the nose is raised in the second plot to maintain a
constant altitude. The bottom axes show the aircraft
turning at various rates toward the new heading.
Cross coupling is evident between all three axes of
motion, particularly strongly during the fastest turn
of 400m radius.

The airspeed and altitude plots of Figure 11 show
the departure from trim values during the man-
oeuvres. TECS achieves a worst case airspeed error
of less than �0.04m/s and a worst case altitude track-
ing error within þ0.04, �0.08m.

The control inputs to the 6-DOF model generated
by TECS are shown in Figure 12. As expected, a
higher turn rate causes a higher deflection from trim
for all control surfaces. Transient synchronisation is
evident between the ailerons and rudder and also the
elevator and throttle. A large spike in the responses is
evident at 220 s (for the 400m turn) when the guid-
ance algorithm switches back to straight line tracking
after the orbit. Boxplots have been included to show
the statistical properties of the surface velocities
throughout the manoeuvre. This includes maximum,
minimum and median, as well as the range between

the 1st and 99th percentiles of velocities over the
course of the trajectory.

The aerodynamic loads exerted on the control sur-
faces are shown in Figure 13; in this figure the two
ailerons are shown separately to highlight the asym-
metric load on each surface. The actuator load plots
are proportional to the deflection plots in the previous
figure and show the same trends.

The instantaneous electrical powers demanded by
the actuators are shown in Figure 14. The ailerons
demand a maximum of 30mW to enter the turn and
a peak up to 3.8W to exit it and return to straight
line tracking. The elevators require a maximum of
0.17mW to maintain attitude on entering the turn
and a peak power of 0.37mW to exit the turn. The
rudder has a peak load of 0.37W and a negligible
power during the constant rate turn.

A metric of average power is used to compare the
different manoeuvres in Figure 15, by integrating the
positive instantaneous power to compute energy
demand and dividing by the time for each trajectory.
Every surface shows a parabolic increase in energy
with decreasing turn radius. The straight line mean

Figure 10. Euler angles (top: roll (�), middle: pitch (�),
bottom: yaw ( )).
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power for the ailerons, elevator and rudder is
4.47mW, 2.53mW and 0.04 mW, respectively. The
maximum mean power for each is 393.90 mW,
3.33mW and 48.31mW, increasing by factors of 88,
1.3 and 1208 from their straight line averages.

The aileron and rudder show an unusual trend,
where smaller heading changes require a higher aver-
age power than a larger turn (at each turn radius). The
elevator generally follows the opposite trend with the
exception of the 30� case. To investigate the reason for
this, the time-series energy plots for the 400m man-
oeuvres are extracted and plot in Figure 16. The ail-
eron and rudder axes show the energy required to enter
the manoeuvre is lower than that needed to leave it,
while the elevator requires more energy to enter the
turn. The elevator plot shows a linear increase in
energy consumed over time for all cases.

The total energy consumption for all five actuators
is presented in Figure 17, which shows that the aver-
age power demand for the 400m 90� turn increases by
12.8 times over the 1000m turn radius, when only the
motor is considered. When the constant steady state
power loss of the servo-controllers is included, the
same comparison results in a factor of only 1.001.

The components of mechanical power for the man-
oeuvres are shown in Figure 18, where higher turn
rates are seen to require higher actuator forces and
velocities (up to 506mN and 7.58mm/s maximum).
The plots all tend towards a location on the zero vel-
ocity line and spend the majority of time exposed to a
positive force.

Following on from the 90� turn results are the out-
comes of the longer distance mission with turbulent

conditions. Figure 19 shows the planned route and the
actual trajectory achieved by the flight control and
guidance systems. There is very little deviation, with
no noticeable steady state tracking errors or man-
oeuvre overshoot.

Figure 20 shows the output of the simulation tool in
windy conditions, allowing a cost factor for the current
trajectory to be computed. The figure shows a zero

Figure 12. Control surface deflections (left) and a statistical

overview of the control velocity throughout the trajectory

(right), showing the maximum, minimum, median and 1st and

99th percentiles. (Top: aileron, upper middle: rudder, lower

middle: elevator, bottom: throttle).

Figure 11. Top: true airspeed, bottom: altitude.
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mean velocity and non-zero load force, with a max-
imum force and velocity of 1.57N and 23.89mm/s.

Discussion

The expected trend is to see larger control sur-
face deflections and higher powers as the turn rate
(and bank angle) increases. When conducting the
experiment with a full 6-DOF model, this relationship
can be quantitatively investigated as will be discussed
in this section. It should be noted that the motor
model used for the analysis is parameterised from a
unit which is oversized for the application, but the

intention is to display the performance of a com-
plete system in a given configuration to drive further
refinement with additional quantitative knowledge.
The aim of this paper is not to accurately describe a
specific existing aircraft.

An overshoot is exhibited on the heading angle
response in Figure 10 which is attributed to the guid-
ance system not taking into account the TTB; as the
turn gets faster the bank angle increases along with
the TTB (and level out). This causes increasing over-
shoot as the turn rate increases on the uncompensated
guidance algorithm which could be reduced with add-
itional functions to anticipate the TTB.

Synchronisation is seen between the aileron and
rudder controls in Figure 12 which demonstrates the
correct transfer of energy between the roll and yaw
axes. The initial impulse required to induce the man-
oeuvres are seen to increase exponentially as the turn
rate increases. While perfectly understandable, these
large deflections are in the opposite direction to that
needed to cause the roll desired. In fact, they are a
result of the sideslip angle cancellation function which
THCS provides.

Figure 13. Aerodynamic forces on surfaces (top: starboard

aileron, upper middle: port aileron, lower middle: rudder,

bottom: elevator).

Figure 14. Instantaneous electrical power (top: aileron,

middle: rudder, bottom: elevator).
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On the Aerosonde, because of the torque induced
by the single propeller, the trim condition requires the
deflected ailerons and rudder seen in Figure 12 to
maintain steady level flight. On an aircraft with two
contra-rotating propellers or jet engines, the aileron
deflection angle would be zero and as such the load
force on each surface would be numerically equal
once the aircraft had returned to steady level
forward flight.

The boxplots in Figure 12 highlight that the max-
imum and minimum velocities are outliers with the
actuators spending the majority of their time at low
velocities, however the supply components must still
be designed to meet these demands. As will become
more clear in the next figures, these peaks cause a
direct increase in motor peak power consumption.

The aerodynamic load forces shown in Figure 13
are proportional to the control surface deflections in
Figure 12; this is expected since the aerodynamic load

estimation tool produces a linear approximation
against surface angle.

Figure 14 demonstrates the benefit of approaching
the actuator power estimation task using a 6-DOF
model; there is a lot of dynamic behaviour which
could not be captured using steady state approxi-
mation methods. In terms of quantifying trajectory
optimality, these plots lend insightful knowledge
into the average and peak power required compared
to ‘typical duty cycle’ methods. As such, use of this
method can have positive cumulative implications
on the aircraft electrical sizing cases. It shows how
low the average power can be; for example energy
conservation between the two aileron actuators
means one actuator requires more power to bank,
but it is counterbalanced by an equal reduction in
that supplied to the opposite actuator.

The parabolic increase in energy consumption with
reducing turn radius in Figure 15 is attributed to the

Figure 15. Total motor electrical energy used (averaged by

distance travelled) (top: aileron, middle: rudder, bottom:

elevator).

Figure 16. Energy consumption of the actuators over time,

during a 400 m radius turn.
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higher bank angles required, leading to increased exci-
tation of the cross-coupled axes of aircraft motion.
Hence, greater actuation power is needed to maintain
the aircraft along the desired trajectory.

Similarly, the flight controller must achieve higher
aircraft rotational accelerations to achieve smaller
heading changes (and to correct trajectory tracking
errors) at a given turn radius. This explains the trend

of increasing average power demand for decreasing
heading changes seen in the aileron and elevator
plots. According to the technique used to compute
average power in Figure 15, the elevator trend is the
opposite (higher average power for larger heading
changes) with the exception of the 30� turn.

The 30� turn departs from the trend set by the
other manoeuvres since the aircraft cannot physically
roll fast enough to achieve the required bank angle in
such a short turn (see Figure 10), becoming particu-
larly problematic at the higher turn rates. The longi-
tudinal and lateral flight controllers interact to drive
the power demand of the elevator up (relative to the
trajectory time) at the 30� turn.

The elevator average power trend is at odds with
the pattern of overall energy consumed by the eleva-
tor in Figure 16, which shows the 150� turn using the
least, and the 30� turn using the most. The difference
between the values is so low that when divided by the
trajectory time to compute average power, the results
are distorted as a result of imperfect trajectory
tracking.

The average power demand from Figure 15 pro-
vides little detail on how the manoeuvre consumed
energy and therefore how the flight controller or tra-
jectory could be optimised. Figure 16 plots the energy
consumed over time for the three actuators; the ail-
eron and rudder axes show the FCS turns consistently
into the manoeuvre, using the same amount of energy
to achieve a 400m radius banked turn. The roll out
overshoot from the shorter turns tend to be larger
than those for large heading changes, requiring
more power to correct the course towards the next
straight line segment.

The inclusion of the servocontroller losses in
Figure 17 highlights that from an energy perspective,
flight control actuators have a minimal effect on the
overall demands of a small UAV power architecture.
The additional consumptions to manoeuvre may not
be significantly higher than the general consumption
of the devices while flying straight.

Figure 18 provides a neat method to characterise
the operating quadrant of the actuator, while also dis-
playing information on the magnitude of the force
and velocity through a mission. The data in the
figure demonstrates the ability of the method pre-
sented in this paper to analyse and compact a trajec-
tory into one data plot. These force-speed plots can
have spatial statistics applied to quantify a penalty
factor for a particular flight path, which then feeds
back to the optimisation process.

The previous figure shows the force-velocity data
of a single banked turn manoeuvre, which has been
the focus of this paper. The method of course allows
more in-depth investigations to be performed; for
example, longer trajectories and the inclusion of tur-
bulence. A demonstration of this capability is
included as the final piece in this paper; Figure 19
shows the flight path of the UAV performing

Figure 17. Effect on electrical energy consumption of servo-

controller (averaged by distance travelled).

Figure 18. Force–speed plot of the starboard aileron actu-

ator during the 90� turn.
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arbitrary heading changes and finishing a distance
12 km from the starting location in windy conditions.
The planned route is user specified and provided to
the guidance algorithm, with the first coordinate and
segment bearing also being used to initialise the air-
craft model position. The guidance algorithm and
flight controller successfully maintain the aircraft
flying along the predefined route and execute filleted
turns, even when exposed to turbulent wind sources.

The aircraft is subjected to turbulence provided by
a Dryden gust model which adds a filtered white noise
velocity vector to the aircraft’s velocity vector. The
aim of this test is to demonstrate the results which
are obtained in less idealised conditions and briefly
examine the usefulness to trajectory optimisation. It
is evident from Figures 10 to 14 that time domain
presentation and analysis of 6-DOF actuator power
consumption is not convenient. Removing the time
element and plotting the actuator load force against
the speed give a single snapshot summary of a whole
trajectory.

The aileron force–velocity plot for the turbulent
mission is shown in Figure 20, where the mean
value shows all motion rotates around zero velocity.
This is the expected result since control surface
motion occurs around a central zero location, but
on the Aerosonde it has to maintain a constant
force to oppose the rolling torque applied by the
single propeller. It should be observed that the mean
exists on the border between a motoring and generat-
ing quadrant, implying zero energy transfer. This is
correct because the figure presents the mechanical
energy delivered; the electrical energy plot would
depend on the power converter used to drive the actu-
ator. If no regeneration energy is stored (by using
a dissipating resistor) the energy in the generating
quadrants is wasted; the mean will move into the
motoring quadrant and equal the mean power used
in the current trajectory. Using the force–velocity plot
(or indeed voltage-current) technique, a set of

manoeuvres could be performed and used to populate
lookup tables that are used for steady state approxi-
mations of dynamic manoeuvres.

One observation from the turbulent test is that the
simulation speed decreases significantly; since there
are no steady state sections of the flight, the solver
time step is unable to increase at any point. One
point to note is that if a trajectory optimisation task
in windy conditions is sought, the noise sources must
be pseudo-random and be identical for each separate
trajectory execution.

Conclusion

A simulation tool has been successfully developed to
investigate dynamic actuator power consumption
during trajectory following manoeuvres. The tool is
designed for high-speed execution by providing top
level electrical power consumption data without mod-
elling detailed electrical effects such as harmonics of
the servo drive signals.

The paper demonstrates the application of the
model to trajectory optimisation processes, by creat-
ing a simple set of manoeuvres to which the optimum
is obvious; one banked turn to a new heading at vari-
ous turn rates. These trajectories are processed by the
model and a value of average motor electrical power is
returned. The result produced by the model is that low
turn rates require less energy than high turn rates
(12.8 times less for the 90� turn, neglecting the servo-
controller losses), due to the reduced aerodynamic
loads and lower excitement of cross coupled axes of
motion. When including a constant loss approxima-
tion for the servocontrollers, the reduction decreases
significantly to a factor of 1.001.

While the actuator models may not be true repre-
sentations of their nonlinear real world counterparts,

Figure 20. Force–speed plot of the starboard aileron actu-

ator following an arbitrary trajectory in turbulence.

Figure 19. Trajectory followed by the Aerosonde in turbu-

lent conditions.
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when applied to trajectory optimisation they still pro-
vide useful relative estimations for aircraft component
sizing and operation when compared against them-
selves. That is, comparing one possible trajectory
against another.

The main complication when using this technique
to analyse power consumption of actuators is the high
sensitivity to the FCS and guidance algorithm used.
In some instances this may be considered a benefit if
the focus of the work is to analyse energy efficient
FCSs such as comparing TECS/THCS to classic
single input, single output autopilots. The presented
methodology is capable of doing this analysis, but
time must be spent to implement and tune each con-
troller to be assessed. This includes balancing the
trade-off between high computational performance
and control performance – fast control means high
frequencies and thus small timesteps.

The structure of the EMA actuator model is found
to be suitable for the task of low frequency dynamic
power consumption simulation. The greatest weak-
ness is currently the friction model, which provides
zero friction torque at zero velocity. Since the actu-
ators are most often stationary throughout a flight,
this omission causes a significant underestimation of
the power consumption.

The aerodynamic load estimator available for use
in this paper does not produce valid results for low
Reynolds number wings. Although the trends in this
paper are correct, the numerical validity of the simu-
lation tool would be improved with more detailed
aerodynamic load estimation methods.

Recommended future work involves improving the
guidance algorithm to take into account the TTB for
the aircraft in a robust manner. The results produced
in this work are skewed due to suboptimal path fol-
lowing, the associated errors in distance travelled
could be reduced by an improved guidance controller.

Other recommended additions are to include an
engine model which simulates the change in fuel
burn due to power off-takes, coupled with an elec-
trical generator model. This would allow a direct
affect on fuel burn due to electrical system demands
to be quantitatively analysed.

Future addition of an experimentally validated
actuator model which includes presliding and break-
away characteristics would significantly improve the
numerical accuracy of the method. Another key add-
ition would be the inclusion of power electronic con-
verter losses which are required to drive the actuators.
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Appendix

Notation

Aw control surface area m2

Bv actuator viscous friction Nm/rad s�1

�c control surface mean aerody-

namic chord

m

Ch hinge moment coefficient –

Ch� hinge moment angle of attack

derivative

–

Ch� hinge moment control surface

angle derivative

–

F sum of forces on aircraft N

F l actuator load force N

Hb angular momentum of the

aircraft in the body frame

kg m2 s�1

J aircraft moment of inertia kg m2

Km actuator screw stiffness N/m

m aircraft mass Kg

M sum of moments on aircraft Nm

M control surface equivalent mass Kg

p actuator gear and screw ratio –

q dynamic pressure Pa

THM aerodynamic hinge moment Nm

Tm motor load torque Nm

Vb u v w½ �
T , velocity with regards to

the inertial frame, expressed

in the body frame

ms�1

xl actuator load linear position m

xm actuator ball screw nut linear

position

m

� angle of attack rad

� control surface deflection angle rad

�m motor shaft angle rad

xb p q r½ �T , body axis angular rates rad s�1
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