1,372 research outputs found

    Nonequilibrium perturbation theory for spin-1/2 fields

    Get PDF
    A partial resummation of perturbation theory is described for field theories containing spin-1/2 particles in states that may be far from thermal equilibrium. This allows the nonequilibrium state to be characterized in terms of quasiparticles that approximate its true elementary excitations. In particular, the quasiparticles have dispersion relations that differ from those of free particles, finite thermal widths and occupation numbers which, in contrast to those of standard perturbation theory evolve with the changing nonequilibrium environment. A description of this kind is essential for estimating the evolution of the system over extended periods of time. In contrast to the corresponding description of scalar particles, the structure of nonequilibrium fermion propagators exhibits features which have no counterpart in the equilibrium theory.Comment: 16 pages; no figures; submitted to Phys. Rev.

    Primary cutaneous anaplastic large cell lymphoma shows a distinct miRNA expression profile and reveals differences from tumor-stage mycosis fungoides

    Get PDF
    Copyright @ 2012 John Wiley & SonsThe miRNA expression profiles of skin biopsies from 14 primary cutaneous anaplastic large cell lymphoma (C-ALCL) patients were analysed with miRNA microarrays using the same control group of 12 benign inflammatory dermatoses (BID) as previously used to study the miRNA expression profile of tumor-stage mycosis fungoides (MF). We identified 13 differentially expressed miRNAs between C-ALCL and BID. The up-regulation of miR-155, miR-27b, miR-30c and miR-29b in C-ALCL was validated by miRNA-Q-PCR on independent study groups. Additionally, the miRNA expression profiles of C-ALCL were compared with those of tumor-stage MF. Although miRNA microarray analysis did not identify statistically significant differentially expressed miRNAs, miRNA-Q-PCR demonstrated statistically significantly differential expression of miR-155, miR-27b, miR-93, miR-29b and miR-92a between tumor-stage MF and C-ALCL. This study, the first describing the miRNA expression profile of C-ALCL, reveals differences with tumor-stage MF, suggesting a different contribution to the pathogenesis of these lymphomas.This work was funded by grants from Netherlands Organization for Scientific Research (NWO) (MHV) and the Fondation Rene´ Touraine (MvK), and grants from the Leukaemia and Lymphoma Research (EB) and the Julian Starmer-Smith Memorial Fund (CHL)

    Nonequilibrium perturbation theory for complex scalar fields

    Full text link
    Real-time perturbation theory is formulated for complex scalar fields away from thermal equilibrium in such a way that dissipative effects arising from the absorptive parts of loop diagrams are approximately resummed into the unperturbed propagators. Low order calculations of physical quantities then involve quasiparticle occupation numbers which evolve with the changing state of the field system, in contrast to standard perturbation theory, where these occupation numbers are frozen at their initial values. The evolution equation of the occupation numbers can be cast approximately in the form of a Boltzmann equation. Particular attention is given to the effects of a non-zero chemical potential, and it is found that the thermal masses and decay widths of quasiparticle modes are different for particles and antiparticles.Comment: 15 pages using RevTeX; 2 figures in 1 Postscript file; Submitted to Phys. Rev.

    The parasitic worm-derived immunomodulator, ES-62 and its drug-like small molecule analogues exhibit therapeutic potential in a model of chronic asthma

    Get PDF
    Chronic asthma is associated with persistent lung inflammation and long-term remodelling of the airways that have proved refractory to conventional treatments such as steroids, despite their efficacy in controlling acute airway contraction and bronchial inflammation. As its recent dramatic increase in industrialised countries has not been mirrored in developing regions, it has been suggested that helminth infection may protect humans against developing asthma. Consistent with this, ES-62, an immunomodulator secreted by the parasitic worm Acanthocheilonema viteae, can prevent pathology associated with chronic asthma (cellular infiltration of the lungs, particularly neutrophils and mast cells, mucus hyper-production and airway thickening) in an experimental mouse model. Importantly, ES-62 can act even after airway remodelling has been established, arresting pathogenesis and ameliorating the inflammatory flares resulting from repeated exposure to allergen that are a debilitating feature of severe chronic asthma. Moreover, two chemical analogues of ES-62, 11a and 12b mimic its therapeutic actions in restoring levels of regulatory B cells and suppressing neutrophil and mast cell responses. These studies therefore provide a platform for developing ES-62-based drugs, with compounds 11a and 12b representing the first step in the development of a novel class of drugs to combat the hitherto intractable disorder of chronic asthma

    Scaling in high-temperature superconductors

    Full text link
    A Hartree approximation is used to study the interplay of two kinds of scaling which arise in high-temperature superconductors, namely critical-point scaling and that due to the confinement of electron pairs to their lowest Landau level in the presence of an applied magnetic field. In the neighbourhood of the zero-field critical point, thermodynamic functions scale with the scaling variable (TTc2(B))/B1/2ν(T-T_{c2}(B))/B^{1/2\nu}, which differs from the variable (TTc(0))/B1/2ν(T - T_c(0))/B^{1/2\nu} suggested by the gaussian approximation. Lowest-Landau-level (LLL) scaling occurs in a region of high field surrounding the upper critical field line but not in the vicinity of the zero-field transition. For YBaCuO in particular, a field of at least 10 T is needed to observe LLL scaling. These results are consistent with a range of recent experimental measurements of the magnetization, transport properties and, especially, the specific heat of high-TcT_c materials.Comment: 22 pages + 1 figure appended as postscript fil

    Critical Casimir Effect in 3He-4He films

    Full text link
    Universal aspects of the thermodynamic Casimir effect in wetting films of 3He-4He mixtures near their bulk tricritical point are studied within suitable models serving as representatives of the corresponding universality class. The effective forces between the boundaries of such films arising from the confinement are calculated along isotherms at several fixed concentrations of 3He. Nonsymmetric boundary conditions impose nontrivial concentration profiles leading to repulsive Casimir forces which exhibit a rich behavior of the crossover between the tricritical point and the line of critical points. The theoretical results agree with published experimental data and emphasize the importance of logarithmic corrections.Comment: 12 pages, 4 figures, submitted to the Phys. Rev. Let

    Relaxation and Kinetics in Scalar Field Theories

    Get PDF
    A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the ``quasiparticle'' distribution functions is obtained that allows a clear understanding of the different ``coarse graining'' approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard-thermal loop resummation and to an improvement including renormalization, off-shell effects and contributions that change chemical equilibrium on short time scales. As a byproduct of these methods we establish the relation between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the ``relaxation time approximation''. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi) classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium.Comment: 28 pages, revtex 3.0, two figures available upon reques

    Crossover from Isotropic to Directed Percolation

    Full text link
    Percolation clusters are probably the simplest example for scale--invariant structures which either are governed by isotropic scaling--laws (``self--similarity'') or --- as in the case of directed percolation --- may display anisotropic scaling behavior (``self--affinity''). Taking advantage of the fact that both isotropic and directed bond percolation (with one preferred direction) may be mapped onto corresponding variants of (Reggeon) field theory, we discuss the crossover between self--similar and self--affine scaling. This has been a long--standing and yet unsolved problem because it is accompanied by different upper critical dimensions: dcI=6d_c^{\rm I} = 6 for isotropic, and dcD=5d_c^{\rm D} = 5 for directed percolation, respectively. Using a generalized subtraction scheme we show that this crossover may nevertheless be treated consistently within the framework of renormalization group theory. We identify the corresponding crossover exponent, and calculate effective exponents for different length scales and the pair correlation function to one--loop order. Thus we are able to predict at which characteristic anisotropy scale the crossover should occur. The results are subject to direct tests by both computer simulations and experiment. We emphasize the broad range of applicability of the proposed method.Comment: 19 pages, written in RevTeX, 12 figures available upon request (from [email protected] or [email protected]), EF/UCT--94/2, to be published in Phys. Rev. E (May 1994

    Critical and Tricritical Hard Objects on Bicolorable Random Lattices: Exact Solutions

    Full text link
    We address the general problem of hard objects on random lattices, and emphasize the crucial role played by the colorability of the lattices to ensure the existence of a crystallization transition. We first solve explicitly the naive (colorless) random-lattice version of the hard-square model and find that the only matter critical point is the non-unitary Lee-Yang edge singularity. We then show how to restore the crystallization transition of the hard-square model by considering the same model on bicolored random lattices. Solving this model exactly, we show moreover that the crystallization transition point lies in the universality class of the Ising model coupled to 2D quantum gravity. We finally extend our analysis to a new two-particle exclusion model, whose regular lattice version involves hard squares of two different sizes. The exact solution of this model on bicolorable random lattices displays a phase diagram with two (continuous and discontinuous) crystallization transition lines meeting at a higher order critical point, in the universality class of the tricritical Ising model coupled to 2D quantum gravity.Comment: 48 pages, 13 figures, tex, harvmac, eps

    Quantum Rolling Down out of Equilibrium

    Full text link
    In a scalar field theory, when the tree level potential admits broken symmetry ground states, the quantum corrections to the static effective potential are complex. (The imaginary part is a consequence of an instability towards phase separation and the static effective potential is not a relevant quantity for understanding the dynamics). Instead, we study here the equations of motion obtained from the one loop effective action for slow rollover out of equilibrium. We considering the case in which a scalar field theory undergoes a rapid phase transition from Ti>TcT_i>T_c to Tf<TcT_f<T_c. We find that, for slow rollover initial conditions (the field near the maximum of the tree level potential), the process of phase separation controlled by unstable long-wavelength fluctuations introduces dramatic corrections to the dynamical evolution of the field. We find that these effects slow the rollover even furtherComment: 33 pages, Latex,LPTHE-PAR 92-33 PITT 92-0
    corecore