1,017 research outputs found

    Spin Transport in a Mott Insulator of Ultracold Fermions

    Full text link
    Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transport in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole-assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model.Comment: 16 pages, 10 figure

    Exit from Naive Pluripotency Induces a Transient X Chromosome Inactivation-like State in Males.

    Get PDF
    A hallmark of naive pluripotency is the presence of two active X chromosomes in females. It is not clear whether prevention of X chromosome inactivation (XCI) is mediated by gene networks that preserve the naive state. Here, we show that robust naive pluripotent stem cell (nPSC) self-renewal represses expression of Xist, the master regulator of XCI. We found that nPSCs accumulate Xist on the male X chromosome and on both female X chromosomes as they become NANOG negative at the onset of differentiation. This is accompanied by the appearance of a repressive chromatin signature and partial X-linked gene silencing, suggesting a transient and rapid XCI-like state in male nPSCs. In the embryo, Xist is transiently expressed in males and in females from both X chromosomes at the onset of naive epiblast differentiation. In conclusion, we propose that XCI initiation is gender independent and triggered by destabilization of naive identity, suggesting that gender-specific mechanisms follow, rather than precede, XCI initiation.This study was supported by a Wellcome Trust Fellowship (WT101861) to J.C.R.S., who is a Wellcome Trust Senior Research Fellow. E.J.S. is the recipient of a Ph.D. fellowship from the Portuguese Foundation for Sciences and Technology, FCT (SFRH/BD/52197/2013). H.T.S. and L.E.B. are recipients of an MRC Ph.D. studentship

    Microbial Resistance Mechanisms to the Antibiotic and Phytotoxin Fusaric Acid

    Get PDF
    Fusaric acid (FA) produced by Fusarium oxysporum plays an important role in disease development in plants, including cotton. This non-specific toxin also has antibiotic effects on microorganisms. Thus, one expects a potential pool of diverse detoxification mechanisms of FA in nature. Bacteria and fungi from soils infested with Fusarium and from laboratory sources were evaluated for their ability to grow in the presence of FA and to alter the structure of FA into less toxic compounds.None of the bacterial strains were able to chemically modify FA. Highly FA resistant strains were found only in Gram-negative bacteria, mainly in the genus of Pseudomonas. The FA resistance of the Gram-negative bacteria was positively correlated with the number of predicted genes for FA efflux pumps present in the genome. Phylogenetic analysis of predicted FA resistance proteins (FUSC, an inner membrane transporter component of the efflux pump) revealed that FUSC proteins having high sequence identities with the functionally characterized FA resistance protein FusC or Fdt might be the major contributors of FA resistance. In contrast, most fungi converted FA to less toxic compounds regardless of the level of FA resistance they exhibited. Five derivatives were detected, and the detoxification of FA involved either oxidative reactions on the butyl side chain or reductive reactions on the carboxylic acid group. The production of these metabolites from widely different phyla indicates that resistance to FA by altering its structure is highly conserved. A few FA resistant saprophytic or biocontrol strains of fungi were incapable of altering FA, indicating a possible involvement of efflux transporters. Deployment of both efflux and derivatization mechanisms may be a common feature of fungal FA resistance

    Quantum-Gas Microscope for Fermionic Atoms

    Get PDF
    We realize a quantum-gas microscope for fermionic ⁴⁰K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single-atom level. We combine 3D Raman sideband cooling with high-resolution optics to simultaneously cool and image individual atoms with single-lattice-site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell’s demon to assemble low-entropy many-body states. Single-site-resolved imaging of fermions enables the direct observation of magnetic order, time-resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement

    Tamoxifen Initiation After Ductal Carcinoma In Situ

    Get PDF
    Endocrine therapy initiation after ductal carcinoma in situ (DCIS) is highly variable and largely unexplained. National guidelines recommend considering tamoxifen for women with estrogen receptor-positive (ER+) DCIS or who undergo excision alone. We evaluated endocrine therapy use after DCIS over a 15-year period in an integrated health care setting to identify factors related to initiation

    Associations among personal care product use patterns and exogenous hormone use in the NIEHS Sister Study

    Get PDF
    It is hypothesized that certain chemicals in personal care products may alter the risk of adverse health outcomes. The primary aim of this study was to use a data-centered approach to classify complex patterns of exposure to personal care products and to understand how these patterns vary according to use of exogenous hormone exposures, oral contraceptives (OCs) and post-menopausal hormone therapy (HT). The NIEHS Sister Study is a prospective cohort study of 50,884 US women. Limiting the sample to non-Hispanic blacks and whites (N = 47,019), latent class analysis (LCA) was used to identify groups of individuals with similar patterns of personal care product use based on responses to 48 survey questions. Personal care products were categorized into three product types (beauty, hair, and skincare products) and separate latent classes were constructed for each type. Adjusted prevalence differences (PD) were calculated to estimate the association between exogenous hormone use, as measured by ever/never OC or HT use, and patterns of personal care product use. LCA reduced data dimensionality by grouping of individuals with similar patterns of personal care product use into mutually exclusive latent classes (three latent classes for beauty product use, three for hair, and four for skin care. There were strong differences in personal care usage by race, particularly for haircare products. For both blacks and whites, exogenous hormone exposures were associated with higher levels of product use, especially beauty and skincare products. Relative to individual product use questions, latent class variables capture complex patterns of personal care product usage. These patterns differed by race and were associated with ever OC and HT use. Future studies should consider personal care product exposures with other exogenous exposures when modeling health risks

    The human papillomavirus E7 proteins associate with p190RhoGAP and alter its function

    Get PDF
    Using mass spectrometry, we identified p190RhoGAP (p190) as a binding partner of human papillomavirus 16 (HPV16) E7. p190 belongs to the GTPase activating protein (GAP) family and is one of the primary GAPs for RhoA. GAPs stimulate the intrinsic GTPase activity of the Rho proteins, leading to Rho inactivation and influencing numerous biological processes. RhoA is one of the best-characterized Rho proteins and is specifically involved in formation of focal adhesions and stress fibers, thereby regulating cell migration and cell spreading. Since this is the first report that E7 associates with p190, we carried out detailed interaction studies. We show that E7 proteins from other HPV types also bind p190. Furthermore, we found that conserved region 3 (CR3) of E7 and the middle domain of p190 are important for this interaction. More specifically, we identified two residues in CR3 of E7 that are necessary for p190 binding and used mutants of E7 with mutations of these residues to determine the biological consequences of the E7-p190 interaction. Our data suggest that the interaction of E7 with p190 dysregulates this GAP and alters the actin cytoskeleton. We also found that this interaction negatively regulates cell spreading on a fibronectin substrate and therefore likely contributes to important aspects of the HPV life cycle or HPV-induced tumorigenesis. © 2014, American Society for Microbiology
    corecore