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Abstract 

OCT4 is a fundamental component of the molecular circuitry governing 

pluripotency in vivo and in vitro. To determine how OCT4 establishes and 

protects the pluripotent lineage in the embryo, we used comparative single 

cell transcriptomics and quantitative immunofluorescence on control and 

OCT4 null blastocyst inner cell masses at two developmental stages. 

Surprisingly, activation of most pluripotency-associated transcription factors in 

the early mouse embryo occurs independently of OCT4, with the exception of 

the JAK/STAT signalling machinery. Concurrently, OCT4 null inner cell 

masses ectopically activate a subset of trophectoderm-associated genes. 

Inspection of metabolic pathways implicates regulation of rate-limiting 

glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. 

Furthermore, upregulation of the lysosomal pathway was specifically detected 

in OCT4 null embryos. This finding implicates a requirement for OCT4 in 

production of normal trophectoderm. Collectively, our findings uncover 

regulation of cellular metabolism and biophysical properties as mechanisms 

by which OCT4 instructs pluripotency.  

 

Significance Statement 

We used single cell whole genome transcriptional profiling and protein 

quantification to investigate the role of OCT4 in establishing pluripotency in 

the murine embryo. Surprisingly, most pluripotency-associated factors are 

induced normally in OCT4 null early blastocysts, apart from members of the 

STAT3 signalling pathway. Coincidentally, certain trophectoderm markers are 

induced, but not Cdx2, previously implicated to repress Pou5f1 in vitro. This 
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ectopic gene activation suggests a role for OCT4 in maintaining chromatin in 

a pluripotency-compatible state, likely via UTF1, a known OCT4 target. At 

implantation, OCT4 null inner cell masses morphologically resemble 

trophectoderm, but exhibit molecular differences linking metabolic and 

physical stress responses to loss of OCT4. These effects correlate with 

reduced STAT3 signalling and consequent reduction of oxidative respiration. 
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Introduction  

Formation of a mammalian organism pivots upon establishment of 

extraembryonic tissues to pattern the foetus and expedite connection with the 

maternal vascular system, whilst preserving a pluripotent population of cells 

with the responsive capacity to generate body pattern and tissues 

progressively during development. Specification of trophectoderm (TE, 

founder of the placenta) on the outside of the preimplantation embryo 

coincides with appearance of the blastocyst cavity and a metabolic switch 

from pyruvate and lactose to glucose utilisation with increased oxygen 

consumption (1-5). This heralds an increase in metabolic activity by the 

differentiating TE (6, 7). The murine embryo can overcome adverse 

consequences associated with accumulation of reactive oxygen species 

during the metabolic transition to oxidative phosphorylation, facilitated by the 

transcriptional enhancer factor TEAD4 (8, 9). TEAD4 intensifies in the TE, 

where it cooperates with nuclear YAP to initiate transcription of TE-specific 

genes (10, 11). Acquisition of TE identity actuates distinct metabolic 

requirements compared with the undifferentiated inner cell mass (ICM). 

During blastocyst expansion, the transcription factor OCT4 (encoded by 

Pou5f1) becomes restricted to the ICM (12). OCT4 is essential for 

establishment of the pluripotent epiblast, preventing differentiation of the 

embryo towards TE (13), and propagation of pluripotent stem cells in vitro (13-

17). Studies in embryonic stem cells (ESC) indicate that the pluripotency 

network hinges upon OCT4 (18-22). In the embryo OCT4 is detected 

throughout cleavage (12), whereas many other pluripotency-associated 

factors, such as NANOG, appear after the onset of zygotic genome activation 
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(23). However, in embryos lacking OCT4, NANOG emerges robustly (24, 25), 

ruling out failure to express this key pluripotency network gene as a 

contributing feature of the OCT4 null phenotype. To date, evidence that all 

cells in OCT4 null embryos adopt a TE identity is largely restricted to 

morphology and expression of TE-specific markers at the time of implantation 

(13, 24, 26). To scrutinise how acquisition of pluripotency fails in OCT4 null 

ICMs we used single cell RNA sequencing (scRNAseq) and quantitative 

immunofluorescence (QIF) to examine gene expression in wild type, 

heterozygous and OCT4 null mid and late blastocyst ICMs. Differences 

between samples and groups, calculated using bioinformatics and 

computational analysis, revealed a role for OCT4 in defining the metabolic, 

pluripotent and biophysical status of the murine ICM.   
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Results 

Divergence of OCT4 null from control ICM cells during blastocyst expansion 

To investigate the cause of ICM failure in the absence of OCT4 scRNAseq 

was performed. ICMs were immunosurgically isolated from embryonic day (E) 

3.5 (mid) blastocysts resulting from Pou5f1 heterozygous inter se mating. 

ICMs were genotyped using trophectoderm lysate (13, 27). Quality control, as 

previously reported (28), eliminated inadequate samples, leaving 29 mutant 

(MUT), 42 wild-type (WT) and 16 heterozygous (HET) cells from 4, 5 and 2 

mid blastocysts, respectively (Fig.1A, SI Appendix Table S1). Pou5f1 RNA 

was absent from MUT ICM cells, confirming degradation of maternal 

transcripts (Fig.1A, SI Appendix Fig.S1A), consistent with lack of OCT4 

protein observed at the morula stage (13). To characterize global differences 

and similarities between genotypes t-SNE analysis was performed (Fig.1B, SI 

Appendix Fig.S1A) using the most variable genes identified in E3.5 

blastocysts (n=2232, log2FPKM>0.5, logCV2>0.5). MUT cells cluster 

separately from HET and WT, suggesting changes in transcriptome. 

Weighted gene correlation network analysis (WGCNA) allows 

extraction of modules defined by co-regulated genes, combined with 

unsupervised clustering (Fig.1C). Two main modules emerged: module 1 co-

clusters HET and WT and co-regulates pluripotency-associated genes such 

as Pou5f1, Gdf3 and Zfp42 (29-31); module 2 is specific for MUT cells, 

expressing established TE markers, including Gata3, Hand1 and Krt18 (32-

35) (SI Appendix Fig.S1B, SI Appendix Table S2). Interestingly, HET and WT 

cells clustered together, indicating no more than a negligible effect of reduced 

Pou5f1 in HET embryos, contrasting with the elevated and more 
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homogeneous expression of Nanog, Klf4 and Esrrb previously reported in 

Pou5f1 HET ESCs (36) (SI Appendix Fig.S1C).  

 

Suppression of trophectoderm gene network in the ICM depends upon OCT4 

In light of the significant transcriptional differences revealed above, we sought 

insight into regulation of pluripotency genes in E3.5 WT/HET and MUT ICM 

cells. Consistent with previously published immunohistochemistry (IHC) (24, 

25) Nanog was detected, albeit heterogeneously, in MUT cells (SI Appendix 

Fig.S1D). Conversely, Sox2 was not significantly affected at either RNA or 

protein levels, as revealed by quantitative immunofluorescence (QIF) (SI 

Appendix Fig.S1D, Fig.S1E) (37). Esrrb, reported to be a direct OCT4 target 

in vivo (24), showed modest downregulation in MUT cells by scRNAseq, but 

no obvious difference at the protein level via QIF (SI Appendix Fig.S1D, 

Fig.S1E) suggesting initiation of expression independent of OCT4. Specific 

chromatin components establish and maintain pluripotency (38). Utf1, a direct 

OCT4 target (39), is expressed in normal ICM and epiblast (40); its 

expression decreases upon differentiation (41), consistent with its role in 

maintaining a chromatin structure compatible with self-renewal in vitro (42). 

Utf1 was not detected in MUT blastocysts (SI Appendix Fig.S1D). TE 

markers, such as Hand1, Gata3 and Btg1 were found in most MUT cells, 

whereas Cdx2 was poorly represented (5/29 MUT cells; Fig.1D), suggesting 

that TE differentiation of MUT cells is not primarily directed by Cdx2, although 

its protein appeared in the majority of later OCT4 null ICMs by E4.0 (26).  
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Reduction of JAK/STAT signalling distinguishes OCT4 null ICMs 

The JAK/STAT signalling pathway is fundamental for self-renewal and 

pluripotency in vivo and in vitro (43-45). Active P-STAT3 protein and its 

targets Klf4 (46) and Tfcp2l1 (47) were significantly lower in MUT cells at both 

mRNA and protein levels (Fig.1E-H). Total Stat3 mRNA did not vary (SI 

Appendix Fig.S1F). Reduced STAT3 signalling in MUT embryos was most 

likely attributable to absence of its upstream cytokine receptor subunit, gp130 

(Il6st; Fig.1E), also a putative target of OCT4 in ESC (SI Appendix Table S3, 

https://chip-atlas.org/). Socs3, a STAT3 target that exerts negative feedback 

regulation (48) was barely detectable in MUT cells (Fig.1E). PCA computed 

with JAK/STAT signalling pathway genes (https://www.genome.jp/kegg/) 

segregates MUT from WT/HET cells (SI Appendix Fig.S1G); cumulative sum 

on the relative percentage of gene expression is significantly higher (pval < 

0.05) in WT/HET, indicating downregulation of this pathway in MUT cells (SI 

Appendix Fig.S1H). Consistent with a role for OCT4 in control of STAT3 

signalling, we observed a rapid increase in pSTAT3 following over-expression 

of OCT4 in ESCs (SI Appendix Fig.S1I,J).  

 

Dissecting overt impairment of lineage segregation in mature OCT4 null ICMs  

Results so far reveal reduced expression of direct OCT4 targets and 

JAK/STAT pathway members in MUT ICMs coincident with ectopic activation 

of selected TE genes, indicating transcriptional divergence in MUT cells by 

E3.5. For detailed characterisation of the diversion of ICM towards TE in 

embryos lacking OCT4, diffusion component analysis was performed on ICMs 

isolated immunosurgically from implanting embryos at E4.5 (Fig.2A; SI 

https://chip-atlas.org/
https://www.genome.jp/kegg/
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Appendix Fig.S2A); 19 cells isolated from 2 MUT, 22 from 2 WT and 44 from 

4 HET E4.5 ICMs were analysed (SI Appendix Table S1, Fig. 2B,C). The 

expression level of Pou5f1 was measured in each cell (SI Appendix Fig.S2B). 

WT and HET cells assume identity of either epiblast (EPI) or primitive 

endoderm (PrE): 37 versus 29 respectively (Fig.2A-C, SI Appendix 

Fig.S2A,B). No E4.5 MUT cells cluster near EPI or PrE (Fig.2A, SI Appendix 

Fig.S2A). ScRNAseq failed to identify significant expression of maturing PrE 

markers such as Sox17, Gata4 or Sox7 (Fig.2D) in E4.5 MUTs, as predicted 

from IHC or bulk RNA analysis (24, 25). Rarely, E4.5 MUT cells expressed 

Pdgfrα (Fig. 2D), probably reflecting initiation of expression prior to loss of 

maternal OCT4, since PDGFRα, like GATA6, is an early presumptive PrE 

marker (49, 50). 

WGCNA revealed independent clustering of MUT cells and co-

expression of specific genes normally mutually exclusive by E4.5 (SI 

Appendix Fig.S2C, Table S4). We assessed quantitatively and qualitatively 

the PrE and EPI genes underrepresented in E4.5 MUTs (Fig.2E, SI Appendix 

Fig.S2D) and observed a significant drop in intensity in MUT cells, suggesting 

global failure to activate both PrE and EPI transcription networks. In normal 

late blastocysts Gata6 becomes restricted to a subset of cells constituting the 

PrE. As expected, in WT/HET embryos its expression is mutually exclusive 

with Nanog (50, 51). However, in E4.5 MUTs, 7/19 cells co-expressed Gata6 

and Nanog (SI Appendix Fig.S2E), confirming a role for OCT4 in mediating 

mutual repression (24). PrE induction and differentiation is induced by FGF4 

produced from EPI cells (52) interacting with FGFR1 and FGFR2 (53-55). The 

failure of this early lineage segregation in E4.5 MUT ICMs confirms the 
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requirement for OCT4 induction of FGF4 (13); consequently, E4.5 MUT cells 

express only minimal Fgf4 but upregulate Fgfr1 and Fgfr2 (SI Appendix 

Fig.S2F). We adapted a model of the gene network directing the second 

lineage decision, EPI versus PrE (56) in WT/HETs compared with MUT cells. 

In the presence of OCT4, EPI cells express NANOG and FGF4 (Fig.2F). 

FGF4 drives PrE fate transition and restriction (57) by triggering ERK 

signalling, suppressing NANOG and activating PrE markers SOX17, GATA4 

and SOX7. However, in E4.5 MUT cells ERK signal is disrupted and generally 

downregulated (SI Appendix Fig.S2G), resulting in absence of PrE markers 

(Fig.2G).  

 Having identified normal expression of some pluripotency factors in mid 

MUT embryos we inspected late blastocyst ICMs for EPI-enriched genes 

(n=814, Fig.2E). Ternary plots represent expression density between three 

different conditions. We reasoned that if MUT cells fail to express EPI-

enriched genes globally, a bias in the density distribution would be expected. 

Indeed, the EPI/ICM sides of the triangle showed the highest density for EPI 

enriched genes when compared with MUT (Fig.2H). We then explored 

distribution of pluripotency and TE associated factors along the ternary plot. 

Genes not expressed in MUT cells localise close to the EPI apex; these 

include Utf1, Lefty2 and Tdgf1. Overall, most pluripotency factors cluster at 

the ICM/EPI side, indicating lower expression in the E4.5 MUT cells (Fig.2I) or 

TE cells (SI Appendix Fig.S2H). Conversely, genes associated with TE 

identity: Gata2, Gata3, Eomes, Id2, Elf5 and the Notch signalling pathway (35, 

58-62) localise on the side specific for MUT (Fig.2I) and TE cells (SI Appendix 

Fig.S2H). Interestingly Tead4, a crucial transcriptional regulator of 
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mitochondrial function in TE, is downregulated in MUT cells, suggesting 

impairment of mitochondrial function uncoupled from the apparent TE identity 

of E4.5 MUT ICM cells (Fig.2I).  

 

OCT4 MUT cells acquire TE-like identity but diverge from normal TE 

To understand how OCT4 represses TE transcription factors during normal 

ICM development, we sought to identify exclusive and common gene 

expression between WT TE and E4.5 MUT ICM cells. We consulted published 

TE single cell data from E3.5 and E4.0 embryos (63). TE from our own 

samples was not included because by E4.5 embryos have undergone mural 

TE giant cell transformation and are thus technically impossible to 

disaggregate without destroying RNA quality. Diffusion component analysis, 

coupled with pseudotime reconstruction and non-linear regression identified 

different developmental trajectories (Fig.3A). Loss of OCT4 and subsequent 

activation of TE genes drives E4.5 MUT cells towards WT TE. Deconvolution 

of heterogeneous populations (64) is designed to estimate percentage identity 

of distinct cells towards a specific endpoint. To quantify similarities between 

published E4.0 TE and our E4.5 EPI/PrE (WT/HET)-E4.5 MUT cells we 

computed fraction of identity. Similarity between TE and MUT cells was 

highest, with a median value of ~0.6 (60%), compared to ~0.2 (20%) and 

~0.25 (25%) with EPI and PrE cells respectively (Fig. 3B). We further 

validated this result with Gene Set Enrichment Analysis (GSEA) by comparing 

the rank of differentially expressed genes between E4.5 EPI (PrE)/E4.0 TE 

and E4.5 EPI (PrE)/E4.5 MUT (SI Appendix Fig.S3A, B). These results 

indicate that late blastocyst MUT cells share a significant portion of the TE 
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transcriptional program. Since our embryos were dissected from nascent 

implantation sites, they are more advanced than those exhibiting non-TE 

identity profiled in bulk RNAseq previously (24). We performed a two-way 

hierarchical analysis with published TE-enriched genes (63) (Fig.3C). 

Transcripts enriched in early and late TE cells, such as Id2, Krt18, Krt8 and 

Gata3 (34, 61, 65, 66) were also upregulated in MUT cells (Fig.3D). 

Interestingly, we also detected expression of Fabp3 and Cldn4 in E4.5 MUT 

ICM cells and confirmed this observation using OCT4 depleted ESC (Fig.3E, 

SI Appendix Fig.S3C). Fabp3 regulates fatty acid transport in trophoblast cells 

and plays a central role in foetal development (67). Cldn4 is essential for tight 

junction formation between TE cells during blastocyst formation (68). As 

suggested by pseudotime and diffusion component analysis, E4.5 MUT ICM 

cells fail to express a proportion of late TE markers. 

HIPPO signalling promotes the first lineage decision in mouse embryos 

(10, 69). Consistent with the roles of STK3, AMOTL2 and LATS2 in HIPPO 

pathway, their transcripts were differentially regulated in TE versus MUT ICM 

cells from E3.5 blastocysts (Fig.3F). Lats2 and Amotl2 were also significantly 

upregulated in OCT4 deleted ESC compared to WT and were targets of 

OCT4 ChIP-seq in ESC (SI Appendix Fig.S3D, Fig.S3E). Moreover, together 

with “Signalling pathways regulating pluripotency of stem cells” and “Wnt 

Signalling pathway”, “Hippo signalling pathway” is among the top 5 significant 

KEGG pathways enriched with the top 1000 targets of OCT4 in ESC (SI 

Appendix Fig.S3F). This suggests a potential role for OCT4 in controlling the 

balance of HIPPO signalling to prevent ectopic differentiation to TE in the 

normal ICM. In the absence of OCT4, ICM cells undergo default expression of 
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a combination of specific early TE transcription factors, signalling pathways 

and metabolic genes. 

 

Role of OCT4 in regulation of metabolism 

It was previously suggested that OCT4 null embryos exhibit defective 

metabolism by the mid-late blastocyst stage (24) and that changes in acetyl-

CoA, mediated by glycolysis, control early differentiation (70). We performed 

PCA with glycolytic genes. Dimension 1, which explains the largest variability, 

segregates MUT from EPI/PrE cells (Fig.4A). The majority of enzymes were 

downregulated in MUT cells (Fig.4B,C; SI Appendix Fig.S4A). Interestingly, 

the rate limiting glycolytic enzymes Hk2 and Pkm together with Eno1 and 

Pgk1 are potential targets of OCT4 (SI Appendix Fig.S4B, Table S3) in ESC. 

Interestingly, we observed a consistent and significant downregulation of 

several KATS enzymes (Fig.4D), which rely on acetyl-CoA, a product of 

glycolysis, to maintain the open chromatin structure associated with 

pluripotency. This suggests that OCT4 indirectly provides sufficient acetyl-

CoA to support an open chromatin state (71). These observations are 

consistent with recent analysis (doi: https://doi.org/10.1101/2020.09.21.306241) 

showing that OCT4 is critical to maintain a permissive chromatin environment.   

 To assess systematically the modulated biological processes and 

pathways we identified 419 common variable genes between E4.5 MUT/E4.5 

EPI and E4.5 MUT/E4.5 PrE (Fig.4E) and computed KEGG pathway 

enrichment (Fig.4F). “Tight junction“, “cell adhesion molecule“ and “regulation 

of actin cytoskeleton“ processes suggest that OCT4 regulates important 

components of biophysical properties of ICM cells. Interestingly, the most 

https://doi.org/10.1101/2020.09.21.306241
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significant enriched process was “Lysosome”, indicating a strong and pivotal 

role of this pathway in MUT cells.      “Lysosome”, “Autophagy” and “Tight 

junction” were also among the KEGG pathways enriched between WT and 

OCT4 deleted ESC (SI Appendix Fig.S4C) (19). Finally, processes related to 

“Lysosome” were also significantly enriched, including “Peroxisome”, 

“Glycerophospholipid Metabolism”, “Endocytosis”, “PPAR signalling pathway” 

and “Vali, leu and ile degradation”. The most significant biological processes 

associated with the OCT4 MUT phenotype in late blastocysts and OCT4 

deleted ESCs, therefore implicate metabolism and biophysical properties.  

 

Members of the lysosomal pathway are specifically activated in MUT cells 

To determine whether activation of the lysosomal pathway is a TE 

characteristic we explored differentially expressed genes and found that MUT 

cells, but not WT TE, upregulated a significant proportion of lysosomal genes 

(Fig.4G). Lysosome is essential for recycling, recruitment of lipids via 

autophagy and hydrolases, for redistribution of catabolites to maintain cellular 

function (72). Autophagy is a catabolic response to starvation (73). Most 

autophagy-related genes, such as Atg, were upregulated in MUT cells and 

OCT4 conditionally deleted ESC (SI Appendix Fig.S4D-F). Moreover, MUT 

cells undergo a significant upregulation of fatty acid degradation genes (SI 

Appendix Fig.S4E). Our results therefore indicate that, in response to an 

altered and energy insufficient metabolism, MUT cells upregulate lysosomal 

and autophagy pathways as a means to provide cellular energy. The master 

regulator of lysosomal biogenesis and autophagy is TFEB (73). TFEB is 

dissociated by inactive mTORC1 and migrates into the nucleus to activate 
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lysosomal/autophagy genes. The positive regulator of mTORC1 (Rptor) is 

downregulated in MUT cells and, consistently, we found upregulation of 

Deptor, a known negative regulator of mTORC1 (74) (SI Appendix Table S5). 

To confirm activation of the lysosomal pathway via TFEB, we performed IHC 

on OCT4 conditionally depleted ESCs. In OCT4-positive cells, TFEB is 

localized mainly in the cytoplasm. After OCT4 deletion, a significant 

translocation of TFEB from cytosol to nucleus occurs (Fig.4H, SI Appendix 

Fig.S4G). Together, these results indicate that, in response to an altered and 

energy insufficient metabolism, MUT cells upregulate lysosomal and 

autophagy pathways to provide cellular energy.   
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Discussion  

Apart from the known direct targets of OCT4, such as Utf1 (41) expression of 

most other pluripotency-associated genes, including the essential embryonic 

factors NANOG, SOX2 and ESRRB, is not significantly reduced in MUT cells 

compared with WT/HETs at the mid blastocyst stage (E3.5) at both the mRNA 

and protein level (Fig. 1, S1). Detection of most pluripotency-associated 

factors in OCT4 MUT mid blastocysts suggests independence from OCT4 at 

this stage, providing further evidence that the state of naïve pluripotency, as 

captured in the form of ESCs in vitro, is not yet attained by the E3.5 ICM, as 

reported previously (75). Absence of Utf1 expression implicates OCT4 

indirectly in governing the epigenetic landscape of pluripotent cells, which 

may account for the precocious expression of some TE factors in E3.5 MUT 

cells, preceding changes in expression of most pluripotency genes.           

Surprisingly, Cdx2, previously implicated as a master repressor of Pou5f1 in 

vitro (76), was not amongst the early-activated TE factors. This revelation 

highlights the caution with which behaviour of ESCs can be extrapolated to 

the developing mammalian embryo. The possibility to perform detailed 

transcriptome analysis at the single cell level has led to amendment of the 

previous assumption that loss of OCT4 in the embryo simply causes diversion 

to trophectoderm (13). The discovery that TE factors such as Cdx2 and Tead4 

are poorly represented in mid blastocyst ICMs following Oct4 deletion 

provides evidence that this is not the case. However, the increase we 

observed in genes associated with lysosomes and autophagy factors as well 

as reduction in most KATs enzymes (Fig. 4) suggest that the response to the 

stress of loss of Oct4 is largely metabolic. We used a recently developed 
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auxin degron system that can induce relatively rapid depletion of OCT4 

protein in ESCs (doi: https://doi.org/10.1101/2020.09.21.306241) to substantiate the 

role of OCT4 in metabolic processes (Fig. 4H, SI Appendix S4F,G).  

Another putative OCT4 target, Il6st/gp130, is a co-receptor essential 

for STAT3 signalling in ESCs (77). We observed significant downregulation of 

STAT3 target genes in E3.5 MUT cells as well as reduced P-STAT3 protein 

and its pluripotency-associated targets TFCP2L1 and KLF4 (46, 47). 

Interestingly, diversion of ICM cells to TE has been observed in a proportion 

of embryos following maternal/zygotic deletion of Stat3, which was attributed 

to loss of activation of Oct4 (44). Our study, however, implicates placement of 

OCT4 upstream of Stat3.  

Signalling pathways related to matrix organization, including regulation 

of actin cytoskeleton and cell adhesion molecules are significantly affected in 

E3.5 MUT cells. Such processes are associated with exit from pluripotency 

(78); cytoskeletal conformational changes inducing cell spreading are 

associated with differentiation. Our results therefore implicate OCT4 as a 

mediator for regulation of the biophysical properties of undifferentiated cells.  

In this study we dissected the role of metabolism in OCT4 MUT cells. 

We linked the reduction of glycolysis with the downregulation of most Kats 

enzymes, which rely on acetyl-CoA, a product of glycolysis, to acetylate the 

lysine residues on histone proteins and maintain an open chromatin structure, 

associated with pluripotency. We revealed that most enzymes in glycolytic 

pathways are downregulated in MUT cells. This may be because some rate-

limiting enzymes (Hk2, Pgk1, Pkm and Eno1) are potential targets of OCT4. 

We also noted downregulation in MUT cells of genes associated with cell 

https://doi.org/10.1101/2020.09.21.306241
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respiration. This is possibly a downstream effect of reduced STAT3 signalling, 

consistent with promotion of oxidative respiration via STAT3 for maintenance 

and induction of pluripotency (79). Consequently, respiration processes are 

disrupted in OCT4 MUT cells. Our scRNAseq data indicate that lysosomal 

pathway is specifically activated in MUT cells as they transition towards TE. 

We propose that MUT cells upregulate lysosomal gene expression and 

autophagy to counteract the downregulation of glycolysis and the tricarboxylic 

acid cycle. 

The requirement for OCT4 in development of the human embryo 

appears to be even more fundamental than for the mouse (80); OCT4 is 

apparently essential for formation of all three of the founder lineages in the 

human embryo. Consequently, no human embryo in which OCT4 was 

successfully deleted in all cells could advance beyond the 8-cell stage. 

Interestingly, absence of OCT4 in cells within mosaic embryos was 

consistently associated with loss of other pluripotency factors, contrasting with 

the published phenotype of OCT4 deletion in murine embryos (24, 25, 80). 

Furthermore, the presence of OCT4 null cells in mosaic embryos also exerted 

a detrimental effect upon non-deleted cells. The authors used a similar 

CRISPR-Cas9-mediated genome editing strategy for deletion of OCT4 in 

mouse embryos and recapitulated the previously published mouse phenotype, 

consistent with the results we present here. 

In summary, our systematic analysis at the single cell level in mouse 

embryos reveals an in vivo function for OCT4 in activating JAK/STAT 

signalling and regulating metabolic and biophysical cellular properties via 
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energy metabolism, cell morphology and chromatin accessibility for 

establishment of pluripotency in the developing mouse embryo (Fig.5). 
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Materials and Methods 

Experiments were performed in accordance with EU guidelines for the care 

and use of laboratory animals and under the authority of appropriate UK 

governmental legislation. Use of animals in this project was approved by the 

Animal Welfare and Ethical Review Body for the University of Cambridge and 

relevant Home Office licences are in place. 

 

Mice and husbandry 

All embryos were generated from transgenic mouse strains with mixed 

genetic backgrounds. They were: Oct4+/- (13), ZP3CreTg/+ (81), 

R26::CreERT2 (82) and Oct4LoxP/LoxP (25). Compound transgenic mice were 

generated from crosses of these lines. Genotyping was performed by PCR 

analysis using DNA extracted from ear biopsies, or trophectoderm lysate 

following isolation of ICMs by immunosurgery (13, 27). Primer sequences are 

as follows: 

Oct4LoxP: CTCAAACCCCAGGTGATCTTCAAAAC;  

GGATCCCATGCCCTCTTCTGGT 

Oct4 null: GCCTTCCTCTATAGGTTGGGCTCCAACC; 

GGGCTGACCGCTTCCTCGTGCTTTACG; 

GAGCTTATGATCTGATGTCCATCTCTGTGC 

Cre transgene: GCGGTCTGGCAGTAAAAACTATC; 

GTGAAACAGCATTGCTGTCACTT 

Amplification was carried out on around 5 µL of lysate for 35 cycles (following 

95°C hot start for 10 minutes) of 94°C, 15 seconds; 60°C, 12 seconds; 72°C, 

60 seconds, with a final extension at 72°C for 10 minutes. Reaction products 



21 
 

were resolved by agarose gel electrophoresis. Mice were maintained on a 

lighting regime of 14:10 hours light:dark with food and water supplied ad 

libitum. Embryos for RNAseq were generated from Oct4+/- inter se natural 

mating; those for IHC were compound transgenics derived from Oct4LoxP/-; 

ZP3CreTg/+ stud males and Oct4LoxP/LoxP dams. Detection of a copulation plug 

following natural mating indicated E0.5. Embryos were isolated in M2 medium 

(Sigma) at E3.5 or E4.5.  

 

Imaging  

Samples were observed using Leica TCS SP5 confocal microscope. 40x 

objective lens was used with Type F immersion liquid. Quantitative 

immunofluorescence was performed using MINS to segment and quantify 

nuclei (volume, xyz-centroid, fluorescence) on a per embryo basis (37). This 

data was fed into a MATLAB analysis pipelines. In brief, Delaunay 

Triangulation was performed on the centroid of all nuclei to generate an in 

silico embryo surface. Next, distance of each nuclear centroid to each face of 

the triangulated surface was calculated. The minimum distance and variance 

of distances to the surface was used to perform k-means clustering to 

prescribe an identity of either inside, ICM cells with larger minimum distance 

and lower variance, or outside, TE with smaller minimum distance and higher 

variance. Finally, the nonparametric Kruskal-Wallis test was performed to 

determine if the expression levels of cells with a tissue differ between 

genotypes. 

 

Preparation of samples for RNA-sequencing 
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For E3.5 blastocysts, zona pellucidae were removed using acid tyrode’s 

solution (Sigma) and embryos subjected to immunosurgery (13, 27) using 

20% anti-mouse whole antiserum (Sigma) in N2B27 at 37oC, 7% CO2 for 30 

minutes, followed by 3 rinses in M2, then 15 minutes in 20% non-heat 

inactivated rat serum (made in house) in N2B27 at 37oC, 7% CO2. After 30 

minutes in fresh N2B27 lysed trophectoderm was removed and placed in lysis 

buffer for genotyping. ICMs were incubated in 0.025% trypsin (Invitrogen) plus 

1% chick serum (Sigma) for 5-10 minutes in small drops and dissociated by 

repetitive pipetting using a small diameter mouth-controlled flame-pulled 

Pasteur pipette. Individual ICM cells were transferred into single cell lysis 

buffer and snap frozen on dry ice. Smart-seq2 libraries were prepared as 

described previously (83) and sequenced on the Illumina platform in a 125 bp 

paired-end format.  

 

RNA-seq data processing 

Early/mid and late trophectoderm cells were downloaded from GSE45719. 

Genome build GRCm38/mm10 and STAR 2.5.2a (84) were used for aligning 

reads and Ensembl release 87 (85) was used to guide gene annotation. After 

removal of inadequate samples according to filtering criteria previously 

described (28), alignments were quantified to gene loci with htseq-count (86) 

based on annotation from Ensembl 87. Data are available under accession 

number GSE159030. 

 

Transcriptome analysis  
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Principal component and cluster analyses were performed based on 

log2FPKM values computed with custom scripts, in addition to the 

Bioconductor packages DESeq (87) or FactoMineR. Diffusion maps and T-

distributed stochastic neighbor embedding (t-SNE) were produced with 

destiny (88) and Rtsne packages. Diffusion map is a method for 

dimensionality reduction often used to analyse single cell gene expression 

data, specifically to identify bifurcation and pseudotimes. Default parameters 

were used unless otherwise indicated. Differential expression analysis was 

performed with R package scde (89), which has the advantage of fitting 

individual error models for the assessment of differential expression between 

sample groups. For global analyses, we considered only genes with FPKM > 

0 in at least one condition. Euclidean distance and average agglomeration 

methods were used for cluster analyses unless otherwise indicated. 

Expression data are made available in Supplemental Tables and through a 

web application to visualise transcription expression and fitted curve with 

temporal pseudotime of individual genes in embryonic lineages 

(https://giulianostirparo.shinyapps.io/pou5f1/). High variable genes across 

cells were computed according to the methods described (28, 40). A non-

linear regression curve was fitted between average log2 FPKM and the square 

of coefficient of variation (log CV2); then, specific thresholds were applied 

along the x-axis (average log2 FPKM) and y-axis (log CV2) to identify the most 

variable genes. 

To assess the accuracy of the identified lineages, we used the Weighted 

Gene Co-Expression Network Analysis unsupervised clustering method- 

WGCNA (90) to identify specific modules of co-expressed genes in each 

https://giulianostirparo.shinyapps.io/pou5f1/
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developmental lineage/genotype. R package ggtern was used to compute and 

visualize ternary plots. Kyoto Encyclopedia of Genes and Genomes (KEGG) 

was used to compute pathway enrichment and to download genes in 

glycolysis/gluconeogenesis and tricarboxylic acid cycle pathways. 

 

Quadratic programming  

Fractional identity between pre-implantation stages was computed using R 

package DeconRNASeq (64). This package uses quadratic programming 

computation to estimate the proportion of distinctive types of tissue. The 

average expression of pre-implantation stages (E4.5 WT/HET epiblast and 

primitive endoderm, E4.5 MUT cells) was used as “signature” dataset. Finally, 

the fraction of identity between TE cells and the “signature” dataset was 

computed using the overlapping gene expression data (FPKM > 0).  

 

ESCs and culture 

Indole-3-acetic acid (IAA, Sigma) inducible Oct4 deletable pluripotent stem 

cells have recently been described (doi: https://doi.org/10.1101/2020.09.21.306241). 

For TFEB staining, expanded colonies were passaged in standard N2B27 + 

2iL. 0.8 µg of pPB-CAG-GFP-IRES Zeocin (gift from Masaki Kinoshita) and 

0.4 µg of pPy-CAG Pbase were transfected to these cells using lipofectamine 

2000 (Thermo Fisher Scientific). The transfected cells were picked after 

selection with Zeocin (100mg/ml), expanded and routinely maintained on 

0.1% gelatin (Sigma)-coated 6-well plates (Falcon) in N2B27 + 2iL. They were 

passaged every three days following dissociation with Accutase.  

https://doi.org/10.1101/2020.09.21.306241
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Cell differentiation 

IAA inducibly depletable OCT4 cells were seeded (1.5 x 104) on fibronectin-

coated (12.5µg/ml; Millipore) Ibidi-dishes (µ-Dish, 35mm) and cultured in 

N2B27 + 2iL for one day. The next day, medium was switched to N2B27 + 

100U/ml LIF, 3 µM CHIR and 500 µM IAA for OCT4 deletion (or 0.1% ethanol 

for controls) and cells were cultured for another day before analysis was 

performed.  

 

Immunohistochemistry 

Embryos were immunostained as described previously (25). Primary 

antibodies used in the present study are listed in SI Appendix Table S6.  

OCT4-deleted and control ESCs were fixed with 4% PFA in PBS at room 

temperature for 15 minutes, then rinsed in PBS and blocked in PBS 

containing 3% donkey serum (Sigma), 0.1%TritonX at 4oC for 2-3 hours. 

Primary antibodies (SI Appendix Table S7) were diluted in blocking buffer, 

and samples were incubated in the appropriate antibody solution at 4oC 

overnight. They were rinsed three times in PBST, compromising PBS + 0.1% 

TritonX, for 15 minutes each. Secondary antibodies were diluted in blocking 

buffer with or without 500 ng/ml DAPI and samples were incubated in the 

appropriate secondary antibody solution at room temperature for 1 hour in the 

dark. They were rinsed three times in PBST for 15 minutes each, then stored 

in PBS at 4oC in the dark until imaging.   

 

Western Blot  
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For western blotting, TBS-Tween buffer (pH=7.4) was made as follows: 

137mM NaCl, 2.7 mM KCl, 0.25 mM Trizma solution, 1 ml Tween 20 (all 

Sigma), and DI water to the final volume of 1L. For p-STAT3 western, 

membrane blocking was performed for 24 hours in TBS-Tween + 5% BSA at 

4°C followed by 16 hours incubation in 1:1000 monoclonal anti-Y705pSTAT3 

rabbit primary antibody (Cat No 9145; Cell Signalling Technology) in TBS-

Tween + BSA at 4°C. The membrane was washed 3 times in TBS-Tween and 

incubated with 1:10000 HRP-linked anti-rabbit IgG secondary antibody (Cat 

No NA934V; GE Healthcare) for I hr, then washed 3 times in TBS/Tween and 

incubated with ECL Reagent (Amersham). Detection was performed on an X-

ray film (Fujifilm). 

For tubulin western, membrane was blocked for 1 hr, incubated with 1:2000 

monoclonal anti-α-tubulin mouse (Cat No 7291; Abcam) for 30 min and 

washed 3 times in TBS-Tween buffer. Then the membrane was blocked again 

for 1 hr and incubated with 1:10000 HRP-linked anti-mouse IgG secondary 

antibody (Cat No NA931V; GE Healthcare) for 1 hr, followed by the same 

procedures as described for pSTAT3 western.  

 

qRT-PCR 

Total RNA was isolated using RNeasy Mini Kit (QIAGEN) and DNase 

treatment (QIAGEN). Specifically, 500 ng RNA was reverse-transcribed with 

SuperScript III First Strand Synthesis SuperMix for qRT-PCR (ThermoFisher 

Scientific) and the obtained cDNA was analysed by qRT-PCR using Taqman 

Fast Universal PCR MasterMix (ThermoFisher Scientific) or Fast SYBR Green 

Master Mix (ThermoFisher Scientific). Reactions were performed in triplicates 
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in 96 well or 384 well plates (ThermoFisher Scientific) and analysed using 

StepOnePlus Real-Time PCR System (Applied Biosystems) or QuantStudio 

12K Flex system (Applied Bioscience). Gene expression was normalized 

to Gapdh and reference samples indicated specifically. The Taqman assay ID 

is Mm00658129_gH. 

SYBR primers (Sigma Aldrich) 

Atg13 KiCqStart primers M_Atg13_1 
Atg4b KiCqStart primers M_Atg4b_2 
Gm2a KiCqStart primers M_Gm2a_1 
Hexb KiCqStart primers M_Hexb_1 
Lamp2 KiCqStart primers M_Lamp2_1 
Gapdh Fw: CCCACTAACATCAAATGGGG 

Rv: CCTTCCACAATGCCAAAGTT 

 

 

Taqman probes (ThermoFisher Scientific) 

Nanog Mm02384862_g1 
Rex1 Mm03053975_g1 
Elf5 Mm00468732_m1 
 

Plasmids 

PB.TetO.Oct4.PGK.hph is a PiggyBac plasmid that enables Oct4 expression 

under doxycycline inducible promoter/operator (Tet-On system) and 

constitutive expression of hygromycin B resistance marker (hygromycin B 

phosphotransferase, hph). 

PB.CAG.rtTA3.PGK.pac is a PiggyBac plasmid that enables constitutive rtTA 

expression coupled with puromycin resistance marker (Puromycin N-

acetyltransferase, pac).   

CAG.PBase encodes a constitutively expressed PBase to enable 

chromosome integration of PiggyPac plasmids.  
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To design DOX-inducible Oct4 ESC line, E14tg2a cells (500,000 cells per 

well, 6 w plate) were co-transfected with 1 µg PB.CAG.rtTA3.PGK.pac and 

0.5 µg CAG.PBase using Lipofectamine 2000 (Invitrogen) in a total of 2 mL 

culture medium. Transfection medium was withdrawn and fresh culture 

medium applied 8 hours post transfection. Transfectants were selected for a 

month on 50–150 μg/ml hygromycin-B (Life Technologies) combined with 

0.33–1.00 µg/ml puromycin (ThermoFisher). 
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Figure Legends 

Figure1: (A) Schematic of number of single cells per embryo (E3.5 stages) 

and their genotype. Barplot shows FPKM expression of Pou5f1 for each 

single cell. (B) t-SNE plot for early blastocyst cells. Sample colour represents 

the different genotypes. (C) One-way hierarchical cluster of eigengenes 

values (weighted average expression profile) computed from WGCNA (power 

10; dist=0.35, size=30). (D) Barplot of FPKM expression of selected TE 

markers and mean ± sd for WT/HET and MUT (Padj Cdx2:0.96, Hand1:2.32e-

10, Btg1: 2.32e-10, Gata3: 2.32e-10). (E) FPKM expression of genes in 

STAT3 pathway (Padj Il6st:1.35e-15, Klf4:1, Tfcp2l1:5.88e-10, Socs3:1.45e-

16). (F) Confocal images and normalized expression of OCT4 HET and MUT 

embryos stained for p-STAT3, (G) TFCP2L1, and (H) KLF4 and 

corresponding violin plots of quantitative immunofluorescence analysis.  

 

Figure2: (A) Diffusion plot of early and late blastocyst cells; color represents 

the different genotypes and lineages. (B) Dendrogram (agglomeration 

method: ward.D2) for late blastocyst ICM WT/HET cells and (C) schematic 

representation of number of late ICM single cells per embryo and their 

genotype. (D) Single cell FPKM expression of PrE markers and mean ± sd 

(Padj Pdgfra:0.11, Sox17:2.75e-10, Gata4:1.62e-10, Sox7:1.62e-10) in PrE 

and MUT cells. (E) Top: Venn diagram showing the number of significant 

(padj<0.05) and enriched PrE and EPI genes. Bottom: Boxplot of log2FPKM in 

late blastocyst PrE and MUT cells of 667 genes and late blastocyst EPI and 

MUT cells of 517 genes. (F) Network of genes associated with PrE 

specification in WT cells and (G) mutant cells. (H) Ternary plot of early 
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WT/HET early blastocyst cells, WT/HET EPI and MUT cells. Axes show the 

relative fraction of expression of 814 EPI enriched genes or (I) pluripotent and 

trophectoderm associated genes.  

 

Figure3: (A) Left panel: diffusion component plot for E3.5/E4.5 WT/HET/MUT 

cells (this study) and E3.5 and E4.0 TE cells from (63). Color represents the 

different genotypes/lineages. Trajectory lines were fitted with cubic line 

(lambda =0.01). Right panel: diffusion component and pseudotime expression. 

(B) Fraction of similarities between E4.5 EPI (WT/HET)/E4.5 PrE 

(WT/HET)/E4.5 MUT and E4.0 TE cells computed using all expressed genes 

(log2FPKM > 0; Student’s t-test, ***p<0.001). (C) Heatmap of TE markers 

identified by (91) between ICM and TE single cells. (D) Identification of 

lineage trajectories and loess curve fitting between pseudotimes and 

log2FPKM for Id2, Krt18, Krt8, Gata3. (E) Loess curve fitting between 

pseudotimes and log2FPKM for Fabp3 and Cldn4. (F) Boxplot of FPKM 

expression of genes in HIPPO signalling pathway (Student’s t-test; * p<0.05, 

** p<0.01, ***p<0.001).  

 

Figure4: (A) PCA plot of E4.5 WT/HET and MUT cells computed with genes 

in glycolysis/gluconeogenesis KEGG pathway. (B) Glycolysis pathway with 

the associated enzymes (arrows) colored by the ratio between E4.5 WT/HET 

and MUT cells and (C) heatmap of the associated enzymes. (D) Boxplot of 

Kats gene expression value in E4.5 EPI/PrE WT/HET, E4.0 TE and E4.5 MUT 

(Student’s t-test; * p<0.05, ** p<0.01, ***p<0.001). (E) Number of variable 

genes between E4.5 WT EPI/MUT and E4.5 WT PrE/MUT. (F) Enrichment of 
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KEGG pathways computed with 419 common variable genes between MUT 

and E4.5 EPI/PrE. (G) Volcano plot of lysosomal genes variable between 

E4.5 WT/HET and E4.5 MUT and between WT TE and WT ICM. (H) Confocal 

analysis of TFEB localization in OCT4+/+ and OCT4-/- ESCs cultured in 

CHIR+LIF. 

Figure5: Scheme of OCT4 function in pre-implantation embryo development. 
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