29,160 research outputs found

    The use of an optical data acquisition system for bladed disk vibration analysis

    Get PDF
    A new concept in instrumentation was developed by engineers at NASA Lewis Research Center to collect vibration data from multi-bladed rotors. This new concept, known as the optical data acquisition system, uses optical transducers to measure bladed tip delections by reflection light beams off the tips of the blades as they pass in front of the optical transducer. By using an array of transducers around the perimeter of the rotor, detailed vibration signals can be obtained. In this study, resonant frequencies and mode shapes were determined for a 56 bladed rotor using the optical system. Frequency data from the optical system was also compared to data obtained from strain gauge measurements and finite element analysis and was found to be in good agreement

    The Usual Excess-Burden Approximation Usually Doesn't Come Close

    Get PDF
    This paper shows that the usual excess-burden triangle' formula performs poorly when used to assess the excess burden from taxes on intermediate inputs or consumer goods, and derives a practical alternative to this formula. We use an analytically tractable general equilibrium model to reveal how interactions with pre-existing taxes in other markets critically affect the excess burden of new taxes on intermediate inputs or consumer goods. The usual excess-burden formula ignores these interactions, and consequently yields highly inaccurate assessments of excess burden. Prior economic theory implicitly acknowledges the relevance of general-equilibrium interactions to excess burden, but does not indicate which interactions are most important or reveal the fundamental (first-order) contribution of these interactions. Moreover, prior studies do not offer a practical alternative to the usual excess-burden approximation. This paper helps fill the gap between theory and practice. First, it shows analytically that the importance of the interaction with a given pre-existing tax is roughly proportional to the amount of revenue raised by that tax. Second, the paper derives a practical alternative formula for approximating the excess burden from a commodity tax. Finally, it performs numerical simulations to illustrate the significance of adopting our alternative to the usual approximation formula. For realistic parameter values and a wide range of assumed rates for prior taxes, the usual formula captures less than half of the excess burden of taxes on commodities. When the rate of the new tax is small,' this formula captures less than five percent of the true excess burden. In contrast, the alternative approximation formula derived here yields estimates that are consistently within five percent of the actual excess burden.

    Multimodal Representation of Space in the Posterior Parietal Cortex and its use in Planning Movements

    Get PDF
    Recent experiments are reviewed that indicate that sensory signals from many modalities, as well as efference copy signals from motor structures, converge in the posterior parietal cortex in order to code the spatial locations of goals for movement. These signals are combined using a specific gain mechanism that enables the different coordinate frames of the various input signals to be combined into common, distributed spatial representations. These distributed representations can be used to convert the sensory locations of stimuli into the appropriate motor coordinates required for making directed movements. Within these spatial representations of the posterior parietal cortex are neural activities related to higher cognitive functions, including attention. We review recent studies showing that the encoding of intentions to make movements is also among the cognitive functions of this area

    A comparison of three heuristics to choose the variable ordering for CAD

    Get PDF
    Cylindrical algebraic decomposition (CAD) is a key tool for problems in real algebraic geometry and beyond. When using CAD there is often a choice over the variable ordering to use, with some problems infeasible in one ordering but simple in another. Here we discuss a recent experiment comparing three heuristics for making this choice on thousands of examples

    Entanglement Patterns in Mutually Unbiased Basis Sets for N Prime-state Particles

    Get PDF
    A few simply-stated rules govern the entanglement patterns that can occur in mutually unbiased basis sets (MUBs), and constrain the combinations of such patterns that can coexist (ie, the stoichiometry) in full complements of p^N+1 MUBs. We consider Hilbert spaces of prime power dimension (as realized by systems of N prime-state particles, or qupits), where full complements are known to exist, and we assume only that MUBs are eigenbases of generalized Pauli operators, without using a particular construction. The general rules include the following: 1) In any MUB, a particular qupit appears either in a pure state, or totally entangled, and 2) in any full MUB complement, each qupit is pure in p+1 bases (not necessarily the same ones), and totally entangled in the remaining p^N-p. It follows that the maximum number of product bases is p+1, and when this number is realized, all remaining p^N-p bases in the complement are characterized by the total entanglement of every qupit. This "standard distribution" is inescapable for two qupits (of any p), where only product and generalized Bell bases are admissible MUB types. This and the following results generalize previous results for qubits and qutrits. With three qupits there are three MUB types, and a number of combinations (p+2) are possible in full complements. With N=4, there are 6 MUB types for p=2, but new MUB types become possible with larger p, and these are essential to the realization of full complements. With this example, we argue that new MUB types, showing new entanglement characteristics, should enter with every step in N, and when N is a prime plus 1, also at critical p values, p=N-1. Such MUBs should play critical roles in filling complements.Comment: 27 pages, one figure, to be submitted to Physical Revie

    The joint large-scale foreground-CMB posteriors of the 3-year WMAP data

    Full text link
    Using a Gibbs sampling algorithm for joint CMB estimation and component separation, we compute the large-scale CMB and foreground posteriors of the 3-yr WMAP temperature data. Our parametric data model includes the cosmological CMB signal and instrumental noise, a single power law foreground component with free amplitude and spectral index for each pixel, a thermal dust template with a single free overall amplitude, and free monopoles and dipoles at each frequency. This simple model yields a surprisingly good fit to the data over the full frequency range from 23 to 94 GHz. We obtain a new estimate of the CMB sky signal and power spectrum, and a new foreground model, including a measurement of the effective spectral index over the high-latitude sky. A particularly significant result is the detection of a common spurious offset in all frequency bands of ~ -13muK, as well as a dipole in the V-band data. Correcting for these is essential when determining the effective spectral index of the foregrounds. We find that our new foreground model is in good agreement with template-based model presented by the WMAP team, but not with their MEM reconstruction. We believe the latter may be at least partially compromised by the residual offsets and dipoles in the data. Fortunately, the CMB power spectrum is not significantly affected by these issues, as our new spectrum is in excellent agreement with that published by the WMAP team. The corresponding cosmological parameters are also virtually unchanged.Comment: 5 pages, 4 figures, submitted to ApJL. Background data are available at http://www.astro.uio.no/~hke under the Research ta

    A Fresh Look at the Stratigraphy of Northern Australe

    Get PDF
    The roughly circular collection of mare deposits centered at ~38.9S, 93E is often re- ferred to as Mare Australe. It is located outside of the Procellarum KREEP Terrain. The circular arrangement of Australes mare patches has suggested an ancient, heavily degraded or relaxed impact basin roughly 900 km in diameter. The mare deposits are generally thought to have erupted into smaller post- basin craters. The type, volume, and distribution of mare eruptions potentially resembles the early stages of basin-filling mare events, but which are preserved in Australe and some farside locations. Gravity data suggest that if there was a basin, it is much smaller than originally proposed (now ~600 km) and located in the northern part of Mare Australe, between Humboldt, Milne, and Jenner craters. As a whole, Mare Australe lacks the topography typically associated with a basin; however, northern Australe has a slight topographic depression that roughly corresponds to the basin-like Bouguer gravity signature in the same area. The compositions exposed in Humboldt crater suggest that a preexisting basin might have excavated deeper crustal material. However, the underlying cause of the circularity of Mare Australes deposits, particularly those extending outside of the potential impact basin setting, is not yet understood. Thus, Australe may preserve fundamental information about mare volcanism potentially uncoupled from basin formation and structure. The objectives of this study are to use new high- resolution data (images, gravity, topography, and com- position) to reassess Australes mare deposits, deter- mine the timing and style of volcanism, identify discrete basalt deposits, and to further characterize the evolution of magmatism and subsurface structure in this area. Here, we focus on the northern Australe deposits (between Humboldt, Jenner, and Milne). As originally noted by Whitford-Stark (1979), Humboldt crater and its ejecta make an excellent stratigraphic marker that can be traced across much of the Australe region. The ejecta serves as a stratigraphic constraint for absolute model ages (AMAs) derived from crater size-frequency distributions (CSFDs)

    Solar electric propulsion for Mars transport vehicles

    Get PDF
    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed
    • 

    corecore