451 research outputs found

    Chromosomal ampC mutations in cefpodoxime-resistant ESBL-negative uropathogenic escherichia coli

    Get PDF
    AmpC beta-lactamase is an enzyme commonly produced by Escherichia coli that causes resistance to cephalosporins and penicillins. Enzyme production is controlled by the strength of the promoter encoded by the chromosomal ampC gene, with the level of production affected by the presence of certain mutations in this region. This study sets out to determine the prevalence of ampC promoter mutations present in a group of uropathogenic E. coli strains. A total of 50 clinical strains of E. coli were collected from urine samples between June 2011 and November 2011. Strains were investigated for the presence of mutations in the chromosomal ampC promoter region by amplification and sequencing of a 271 bp product. The presence of ampC-carrying plasmids derived from other species was also determined, to exclude these from further analysis. ampC-carrying plasmids were found in 10 of the 50 strains, all of which were of the CIT-type. Analysis of the chromosomal ampC promoter region in the 40 remaining strains showed mutations at 16 different positions, with 18 different genotype patterns detected overall. The most common ampC chromosomal mutation, present in 25 of 40 strains, was a T→A transition at position -32. This mutation has been shown by others to increase enzyme production by up to 46-fold. Altogether, three separate mutations (-32, -42 and -13ins) were present in 90% of the 40 non-plasmid strains, indicating a strong association with the resistance observed. It appears, therefore, that the majority of AmpC-mediated resistance in E. coli can be accounted for by just three point mutations in the chromosome

    Multi-locus sequence typing of Escherichia coli isolates with acquired ampC genes and ampC promoter mutations

    Get PDF
    © 2016 Elsevier Inc. Multi-locus sequence typing was used to reveal a high degree of diversity amongst the E. coli isolates with AmpC plasmid genes, and a high prevalence of the −32 mutation present

    Volume CVI, Number 19, April 14, 1989

    Get PDF
    Institute of High Performance Computing, IHPC;University of Perugia, Italy;University of Calgary, Canada;University of Minnesota, MN, USA;Queen's University BelfastInternational Conference on Computational Science and Its Applications - ICCSA 2005 -- 9 May 2005 through 12 May 2005 -- 65625Discrete mathematics is one of the very basic mathematics courses in computer engineering (CE) and/or computer science (CS) departments. This course covers almost all of the basic concepts for many other courses in the curriculum and requires active learning of students. For this purpose, especially "propositions" concept, which cannot be understood well in prior years, should be covered with every detail. Previous studies show that learning by entertaining activities and competition has positive effect on student motivation. In this study, an Internet-based Discrete Mathematics Package (DMP) for "propositions" that can work in mobile devices and encourages competitive learning between students has been developed within related literature. © Springer-Verlag Berlin Heidelberg 2005

    Resource dedication problem in a multi-project environment

    Get PDF
    There can be different approaches to the management of resources within the context of multi-project scheduling problems. In general, approaches to multiproject scheduling problems consider the resources as a pool shared by all projects. On the other hand, when projects are distributed geographically or sharing resources between projects is not preferred, then this resource sharing policy may not be feasible. In such cases, the resources must be dedicated to individual projects throughout the project durations. This multi-project problem environment is defined here as the resource dedication problem (RDP). RDP is defined as the optimal dedication of resource capacities to different projects within the overall limits of the resources and with the objective of minimizing a predetermined objective function. The projects involved are multi-mode resource constrained project scheduling problems with finish to start zero time lag and non-preemptive activities and limited renewable and nonrenewable resources. Here, the characterization of RDP, its mathematical formulation and two different solution methodologies are presented. The first solution approach is a genetic algorithm employing a new improvement move called combinatorial auction for RDP, which is based on preferences of projects for resources. Two different methods for calculating the projects’ preferences based on linear and Lagrangian relaxation are proposed. The second solution approach is a Lagrangian relaxation based heuristic employing subgradient optimization. Numerical studies demonstrate that the proposed approaches are powerful methods for solving this problem

    Radio-Frequency Spectroscopy

    Get PDF
    Contains reports on three research projects

    Shear stress mediated scrolling of graphene oxide

    Get PDF
    © 2018 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 24 month embargo from date of publication (May 2018) in accordance with the publisher’s archiving policyGraphene oxide scrolls (GOS) are fabricated in high yield from a colloidal suspension of graphene oxide (GO) sheets under shear stress in a vortex fluidic device (VFD) while irradiated with a pulsed laser operating at 1064 nm and 250 mJ. This is in the absence of any other reagents with the structure of the GOS established using powder X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, atomic force microscopy and scanning electron microscopy

    Metallothionein genes: no association with Crohn's disease in a New Zealand population

    Get PDF
    Metallothioneins (MTs) are excellent candidate genes for Inflammatory Bowel Disease (IBD) and have previously been shown to have altered expression in both animal and human studies of IBD. This is the first study to examine genetic variants within the MT genes and aims to determine whether such genetic variants have an important role in this disease. 28 tag SNPs in genes MT1 (subtypes A, B, E, F, G, H, M, X), MT2, MT3 and MT4 were selected for genotyping in a well-characterized New Zealand dataset consisting of 406 patients with Crohn's Disease and 638 controls. We did not find any evidence of association for MT genetic variation with CD. The lack of association indicates that genetic variants in the MT genes do not play a significant role in predisposing to CD in the New Zealand population

    Radio-Frequency Spectroscopy

    Get PDF
    Contains reports on four research projects
    • …
    corecore