18 research outputs found

    Sustaining effective COVID-19 control in Malaysia through large-scale vaccination

    Get PDF
    Introduction: As of 3rd June 2021, Malaysia is experiencing a resurgence of COVID-19 cases. In response, the federal government has implemented various non-pharmaceutical interventions (NPIs) under a series of Movement Control Orders and, more recently, a vaccination campaign to regain epidemic control. In this study, we assessed the potential for the vaccination campaign to control the epidemic in Malaysia and four high-burden regions of interest, under various public health response scenarios. Methods: A modified susceptible-exposed-infectious-recovered compartmental model was developed that included two sequential incubation and infectious periods, with stratification by clinical state. The model was further stratified by age and incorporated population mobility to capture NPIs and micro-distancing (behaviour changes not captured through population mobility). Emerging variants of concern (VoC) were included as an additional strain competing with the existing wild-type strain. Several scenarios that included different vaccination strategies (i.e. vaccines that reduce disease severity and/or prevent infection, vaccination coverage) and mobility restrictions were implemented. Results: The national model and the regional models all fit well to notification data but underestimated ICU occupancy and deaths in recent weeks, which may be attributable to increased severity of VoC or saturation of case detection. However, the true case detection proportion showed wide credible intervals, highlighting incomplete understanding of the true epidemic size. The scenario projections suggested that under current vaccination rates complete relaxation of all NPIs would trigger a major epidemic. The results emphasise the importance of micro-distancing, maintaining mobility restrictions during vaccination roll-out and accelerating the pace of vaccination for future control. Malaysia is particularly susceptible to a major COVID-19 resurgence resulting from its limited population immunity due to the country's historical success in maintaining control throughout much of 2020

    COVID-19 collaborative modelling for policy response in the Philippines, Malaysia and Vietnam

    Get PDF
    Mathematical models that capture COVID-19 dynamics have supported public health responses and policy development since the beginning of the pandemic, yet there is limited discourse to describe features of an optimal modelling platform to support policy decisions or how modellers and policy makers have engaged with each other. Here, we outline how we used a modelling software platform to support public health decision making for the COVID-19 response in the Western Pacific Region (WPR) countries of the Philippines, Malaysia and Viet Nam. This perspective describes an approach to support evidence-based public health decisions and policy, which may help inform other responses to similar outbreak events. The platform we describe formed the basis for one of the inaugural World Health Organization (WHO) Western Pacific (WPRO) Innovation Challenge awards, and was backed by collaboration between epidemiological modellers, those providing public health advice, and policy makers

    A Framework for Survey Planning Using Portable Unmanned Aerial Vehicles (<i>p</i>UAVs) in Coastal Hydro-Environment

    No full text
    Recently, remote sensing using survey-grade UAVs has been gaining tremendous momentum in applications for the coastal hydro-environment. UAV-based remote sensing provides high spatial and temporal resolutions and flexible operational availability compared to other means, such as satellite imagery or point-based in situ measurements. As strict requirements and government regulations are imposed for every UAV survey, detailed survey planning is essential to ensure safe operations and seamless coordination with other activities. This study established a comprehensive framework for the planning of efficient UAV deployments in coastal areas, which was based on recent on-site survey experiences with a portable unmanned aerial vehicle (pUAV) that was carrying a heavyweight spectral sensor. The framework was classified into three main categories: (i) pre-survey considerations (i.e., administrative preparation and UAV airframe details); (ii) execution strategies (i.e., parameters and contingency planning); and (iii) environmental effects (i.e., weather and marine conditions). The implementation and verification of the framework were performed using a UAV–airborne spectral sensing exercise for water quality monitoring in Singapore. The encountered challenges and the mitigation practices that were developed from the actual field experiences were integrated into the framework to advance the ease of UAV deployment for coastal monitoring and improve the acquisition process of high-quality remote sensing images

    A Framework for Survey Planning Using Portable Unmanned Aerial Vehicles (pUAVs) in Coastal Hydro-Environment

    No full text
    Recently, remote sensing using survey-grade UAVs has been gaining tremendous momentum in applications for the coastal hydro-environment. UAV-based remote sensing provides high spatial and temporal resolutions and flexible operational availability compared to other means, such as satellite imagery or point-based in situ measurements. As strict requirements and government regulations are imposed for every UAV survey, detailed survey planning is essential to ensure safe operations and seamless coordination with other activities. This study established a comprehensive framework for the planning of efficient UAV deployments in coastal areas, which was based on recent on-site survey experiences with a portable unmanned aerial vehicle (pUAV) that was carrying a heavyweight spectral sensor. The framework was classified into three main categories: (i) pre-survey considerations (i.e., administrative preparation and UAV airframe details); (ii) execution strategies (i.e., parameters and contingency planning); and (iii) environmental effects (i.e., weather and marine conditions). The implementation and verification of the framework were performed using a UAV&ndash;airborne spectral sensing exercise for water quality monitoring in Singapore. The encountered challenges and the mitigation practices that were developed from the actual field experiences were integrated into the framework to advance the ease of UAV deployment for coastal monitoring and improve the acquisition process of high-quality remote sensing images

    A Comparative Study of Multi-Rotor Unmanned Aerial Vehicles (UAVs) with Spectral Sensors for Real-Time Turbidity Monitoring in the Coastal Environment

    No full text
    Complex coastal environments pose unique logistical challenges when deploying unmanned aerial vehicles (UAVs) for real-time image acquisition during monitoring operations of marine water quality. One of the key challenges is the difficulty in synchronizing the images acquired by UAV spectral sensors and ground-truth in situ water quality measurements for calibration, due to a typical time delay between these two modes of data acquisition. This study investigates the logistics for the concurrent deployment of the UAV-borne spectral sensors and a sampling vessel for water quality measurements and the effects on the turbidity predictions due to the time delay between these two operations. The results show that minimizing the time delay can significantly enhance the efficiency of data acquisition and consequently improve the calibration process. In particular, the outcomes highlight notable improvements in the model’s predictive accuracy for turbidity distribution derived from UAV-borne spectral images. Furthermore, a comparative analysis based on a pilot study is conducted between two multirotor UAV configurations: the DJI M600 Pro with a hyperspectral camera and the DJI M300 RTK with a multispectral camera. The performance evaluation includes the deployment complexity, image processing productivity, and sensitivity to environmental noises. The DJI M300 RTK, equipped with a multispectral camera, is found to offer higher cost-effectiveness, faster setup times, and better endurance while yielding good image quality at the same time. It is therefore a more compelling choice for widespread industry adoption. Overall, the results from this study contribute to advancement in the deployment of UAVs for marine water quality monitoring

    Agroforestry on an active volcanic small island in Indonesia: prospering with adversity

    No full text
    This paper draws on the literature on agroforestry, disaster risk reduction, and livelihoods of people on small islands as it applies to a community prospering in conditions of adversity in Kinali village on Siau Island, Indonesia. Siau Island produces between one-third and one-half of all nutmeg and mace exported from Indonesia. The Kinali community has adopted strategies that enable it to prosper in spite of the risks of living on a small island with an active volcano. The paper charts the sociocultural dynamics of the village and examines how local coping mechanisms based on an agroforestry economy have assisted villagers in dealing with the multiple hazards and constraints arising from the biophysical characteristics of their island. The paper thus contributes to more informed responses to managing volcanic risk

    Germline heterozygous mutations in Nxf1 perturb RNA metabolism and trigger thrombocytopenia and lymphopenia in mice

    No full text
    In eukaryotic cells, messenger RNA (mRNA) molecules are exported from the nucleus to the cytoplasm, where they are translated. The highly conserved protein nuclear RNA export factor1 (Nxf1) is an important mediator of this process. Although studies in yeast and in human cell lines have shed light on the biochemical mechanisms of Nxf1 function, its contribution to mammalian physiology is less clear. Several groups have identified recurrent NXF1 mutations in chronic lymphocytic leukemia (CLL), placing it alongside several RNA-metabolism factors (including SF3B1, XPO, RPS15) whose dysregulation is thought to contribute to CLL pathogenesis. We report here an allelic series of germline point mutations in murine Nxf1. Mice heterozygous for these loss-of-function Nxf1 mutations exhibit thrombocytopenia and lymphopenia, together with milder hematological defects. This is primarily caused by cell-intrinsic defects in the survival of platelets and peripheral lymphocytes, which are sensitized to intrinsic apoptosis. In contrast, Nxf1 mutations have almost no effect on red blood cell homeostasis. Comparative transcriptome analysis of platelets, lymphocytes, and erythrocytes from Nxf1-mutant mice shows that, in response to impaired Nxf1 function, the cytoplasmic representation of transcripts encoding regulators of RNA metabolism is altered in a unique, lineage-specific way. Thus, blood cell lineages exhibit differential requirements for Nxf1-mediated global mRNA export
    corecore