410 research outputs found
Tracing/training rebellion - object work in Meyerhold's biomechanics
[First paragraph]
Lying in the Russian State Archive of Literature and Arts in Moscow (RGALI) is a nine-page document entitled Programme of Biomechanics, Meyerhold Workshop (1922). Though modest in size, it is an unashamedly ambitious programme, which sought to redefine acting in a post-revolutionary context and to place performer training in Russia on a par with science. ‘The task of the biomechanical laboratory is to work out through experimentation a biomechanical system of acting and of actor’s training’ (Hoover 1974: 314), the document claims, setting out a dedicated model of Practice as Research, seventy years before the term became common place in the UK
A Wireless Brain-Machine Interface for Real-Time Speech Synthesis
This is the published version, also available here: http://dx.doi.org/10.1371/journal.pone.0008218.Background
Brain-machine interfaces (BMIs) involving electrodes implanted into the human cerebral cortex have recently been developed in an attempt to restore function to profoundly paralyzed individuals. Current BMIs for restoring communication can provide important capabilities via a typing process, but unfortunately they are only capable of slow communication rates. In the current study we use a novel approach to speech restoration in which we decode continuous auditory parameters for a real-time speech synthesizer from neuronal activity in motor cortex during attempted speech.
Methodology/Principal Findings
Neural signals recorded by a Neurotrophic Electrode implanted in a speech-related region of the left precentral gyrus of a human volunteer suffering from locked-in syndrome, characterized by near-total paralysis with spared cognition, were transmitted wirelessly across the scalp and used to drive a speech synthesizer. A Kalman filter-based decoder translated the neural signals generated during attempted speech into continuous parameters for controlling a synthesizer that provided immediate (within 50 ms) auditory feedback of the decoded sound. Accuracy of the volunteer's vowel productions with the synthesizer improved quickly with practice, with a 25% improvement in average hit rate (from 45% to 70%) and 46% decrease in average endpoint error from the first to the last block of a three-vowel task.
Conclusions/Significance
Our results support the feasibility of neural prostheses that may have the potential to provide near-conversational synthetic speech output for individuals with severely impaired speech motor control. They also provide an initial glimpse into the functional properties of neurons in speech motor cortical areas
Association between HLA Class I and Class II Alleles and the Outcome of West Nile Virus Infection: An Exploratory Study
BACKGROUND: West Nile virus (WNV) infection is asymptomatic in most individuals, with a minority developing symptoms ranging from WNV fever to serious neuroinvasive disease. This study investigated the impact of host HLA on the outcome of WNV disease. METHODS: A cohort of 210 non-Hispanic mostly white WNV(+) subjects from Canada and the U.S. were typed for HLA-A, B, C, DP, DQ, and DR. The study subjects were divided into three WNV infection outcome groups: asymptomatic (AS), symptomatic (S), and neuroinvasive disease (ND). Allele frequency distribution was compared pair-wise between the AS, S, and ND groups using χ2 and Fisher's exact tests and P values were corrected for multiple comparisons (Pc). Allele frequencies were compared between the groups and the North American population (NA) used as a control group. Logistic regression analysis was used to evaluate the potential synergistic effect of age and HLA allele phenotype on disease outcome. RESULTS: The alleles HLA-A*68, C*08 and DQB*05 were more frequently associated with severe outcomes (ND vs. AS, P(A*68) = 0.013/Pc = 0.26, P(C*08) = 0.0075/Pc = 0.064, and P(DQB1*05) = 0.029/Pc = 0.68), However the apparent DQB1*05 association was driven by age. The alleles HLA-B*40 and C*03 were more frequently associated with asymptomatic outcome (AS vs. S, P(B*40) = 0.021/Pc = 0.58 and AS vs. ND P(C*03) = 0.039/Pc = 0.64) and their frequencies were lower within WNV(+) subjects with neuroinvasive disease than within the North American population (NA vs. S, P(B*40) = 0.029 and NA vs. ND, P(C*03) = 0.032). CONCLUSIONS: Host HLA may be associated with the outcome of WNV disease; HLA-A*68 and C*08 might function as "susceptible" alleles, whereas HLA-B*40 and C*03 might function as "protective" alleles
A Wireless Brain-Machine Interface for Real-Time Speech Synthesis
Background: Brain-machine interfaces (BMIs) involving electrodes implanted into the human cerebral cortex have recently been developed in an attempt to restore function to profoundly paralyzed individuals. Current BMIs for restoring communication can provide important capabilities via a typing process, but unfortunately they are only capable of slow communication rates. In the current study we use a novel approach to speech restoration in which we decode continuous auditory parameters for a real-time speech synthesizer from neuronal activity in motor cortex during attempted speech.
Methodology/Principal Findings: Neural signals recorded by a Neurotrophic Electrode implanted in a speech-related region of the left precentral gyrus of a human volunteer suffering from locked-in syndrome, characterized by near-total paralysis with spared cognition, were transmitted wirelessly across the scalp and used to drive a speech synthesizer. A Kalman filter-based decoder translated the neural signals generated during attempted speech into continuous parameters for controlling a synthesizer that provided immediate (within 50 ms) auditory feedback of the decoded sound. Accuracy of the volunteer's vowel productions with the synthesizer improved quickly with practice, with a 25% improvement in average hit rate (from 45% to 70%) and 46% decrease in average endpoint error from the first to the last block of a three-vowel task.
Conclusions/Significance: Our results support the feasibility of neural prostheses that may have the potential to provide near-conversational synthetic speech output for individuals with severely impaired speech motor control. They also provide an initial glimpse into the functional properties of neurons in speech motor cortical areas.National Institute on Deafness and Other Communication Disorders (U.S.) (Grant R44-DC007050)National Institute on Deafness and Other Communication Disorders (U.S.) (Grant R01-DC007683)National Institute on Deafness and Other Communication Disorders (U.S.) (Grant R01-DC002852)Center of Excellence for Learning in Education, Science, and Technology (SBE-0354378
ABCB1 (MDR1) polymorphisms and ovarian cancer progression and survival: A comprehensive analysis from the Ovarian Cancer Association Consortium and The Cancer Genome Atlas
<b>Objective</b>
<i>ABCB1</i> encodes the multi-drug efflux pump P-glycoprotein (P-gp) and has been implicated in multi-drug resistance. We comprehensively evaluated this gene and flanking regions for an association with clinical outcome in epithelial ovarian cancer (EOC).<p></p>
<b>Methods</b>
The best candidates from fine-mapping analysis of 21 <i>ABCB1</i> SNPs tagging C1236T (rs1128503), G2677T/A (rs2032582), and C3435T (rs1045642) were analysed in 4616 European invasive EOC patients from thirteen Ovarian Cancer Association Consortium (OCAC) studies and The Cancer Genome Atlas (TCGA). Additionally we analysed 1,562 imputed SNPs around ABCB1 in patients receiving cytoreductive surgery and either ‘standard’ first-line paclitaxel–carboplatin chemotherapy (n = 1158) or any first-line chemotherapy regimen (n = 2867). We also evaluated ABCB1 expression in primary tumours from 143 EOC patients.<p></p>
<b>Result</b>
Fine-mapping revealed that rs1128503, rs2032582, and rs1045642 were the best candidates in optimally debulked patients. However, we observed no significant association between any SNP and either progression-free survival or overall survival in analysis of data from 14 studies. There was a marginal association between rs1128503 and overall survival in patients with nil residual disease (HR 0.88, 95% CI 0.77–1.01; p = 0.07). In contrast, <i>ABCB1</i> expression in the primary tumour may confer worse prognosis in patients with sub-optimally debulked tumours.<p></p>
<b>Conclusion</b>
Our study represents the largest analysis of <i>ABCB1</i> SNPs and EOC progression and survival to date, but has not identified additional signals, or validated reported associations with progression-free survival for rs1128503, rs2032582, and rs1045642. However, we cannot rule out the possibility of a subtle effect of rs1128503, or other SNPs linked to it, on overall survival.<p></p>
SDSS-IV MaNGA:the spatially resolved stellar initial mass function in ∼ 400 early-type galaxies
MaNGA provides the opportunity to make precise spatially resolved
measurements of the IMF slope in galaxies owing to its unique combination of
spatial resolution, wavelength coverage and sample size. We derive radial
gradients in age, element abundances and IMF slope analysing optical and
near-infrared absorption features from stacked spectra out to the half-light
radius of 366 early-type galaxies with masses .
We find flat gradients in age and [/Fe] ratio, as well as negative
gradients in metallicity, consistent with the literature. We further derive
significant negative gradients in the [Na/Fe] ratio with galaxy centres being
well enhanced in Na abundance by up to 0.5 dex. Finally, we find a gradient in
IMF slope with a bottom-heavy IMF in the centre (typical mass excess factor of
1.5) and a Milky Way-type IMF at the half-light radius. This pattern is
mass-dependent with the lowest mass galaxies in our sample featuring only a
shallow gradient around a Milky Way IMF. Our results imply the local
IMF- relation within galaxies to be even steeper than the global
relation and hint towards the local metallicity being the dominating factor
behind the IMF variations. We also employ different stellar population models
in our analysis and show that a radial IMF gradient is found independently of
the stellar population model used. A similar analysis of the Wing-Ford band
provides inconsistent results and further evidence of the difficulty in
measuring and modelling this particular feature.Comment: 28 pages, 24 figures, 9 tables. MNRAS in pres
SDSS-IV MaNGA: The Spatially Resolved Stellar Initial Mass Function in ~400 Early-Type Galaxies
Mapping Nearby Galaxies at Apache Point Observatory provides the opportunity to make precise spatially resolved measurements of the IMF slope in galaxies owing to its unique combination of spatial resolution, wavelength coverage, and sample size. We derive radial gradients in age, element abundances, and IMF slope analysing optical and near-infrared absorption features from stacked spectra out to the half-light radius of 366 early-type galaxies with masses 9.9–10.8 log M/M⊙. We find flat gradients in age and [α/Fe] ratio, as well as negative gradients in metallicity, consistent with the literature. We further derive significant negative gradients in the [Na/Fe] ratio with galaxy centres being well enhanced in Na abundance by up to 0.5 dex. Finally, we find a gradient in IMF slope with a bottom-heavy IMF in the centre (typical mass excess factor of 1.5) and a Milky Way-type IMF at the half-light radius. This pattern is mass dependent with the lowest mass galaxies in our sample featuring only a shallow gradient around a Milky Way IMF. Our results imply the local IMF–σ relation within galaxies to be even steeper than the global relation and hint towards the local metallicity being the dominating factor behind the IMF variations. We also employ different stellar population models in our analysis and show that a radial IMF gradient is found independently of the stellar population model used. A similar analysis of the Wing-Ford band provides inconsistent results and further evidence of the difficulty in measuring and modelling this particular feature
Recommended from our members
Social cognitive processes explain bias in juror decisions
Jury decisions are among the most consequential social decisions in which bias plays a notable role. While courts take measures to reduce the influence of non-evidentiary factors, jurors may still incorporate biases into their decisions. One common bias, crime-type bias, is the extent to which the perceived strength of a prosecutor’s case depends on the severity of the crime. Moral judgment, affect and social cognition have been proposed as core processes underlying this and other biases. Behavioral evidence alone has been insufficient to distinguish these explanations. To identify the mechanism underlying crime-type bias, we collected functional magnetic resonance imaging patterns of brain activation from mock jurors reading criminal scenarios. Brain patterns from crime-type bias were most similar to those associated with social cognition (mentalizing and racial bias) but not affect or moral judgment. Our results support a central role for social cognition in juror decisions and suggest that crime-type bias and cultural bias may arise from similar mechanisms.
</p
- …