8 research outputs found

    Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calorie restriction (CR) produces a number of health benefits and ameliorates diseases of aging such as type 2 diabetes. The components of the pathways downstream of CR may provide intervention points for developing therapeutics for treating diseases of aging. The NAD<sup>+</sup>-dependent protein deacetylase SIRT1 has been implicated as one of the key downstream regulators of CR in yeast, rodents, and humans. Small molecule activators of SIRT1 have been identified that exhibit efficacy in animal models of diseases typically associated with aging including type 2 diabetes. To identify molecular processes induced in the liver of mice treated with two structurally distinct SIRT1 activators, SIRT501 (formulated resveratrol) and SRT1720, for three days, we utilized a systems biology approach and applied Causal Network Modeling (CNM) on gene expression data to elucidate downstream effects of SIRT1 activation.</p> <p>Results</p> <p>Here we demonstrate that SIRT1 activators recapitulate many of the molecular events downstream of CR <it>in vivo</it>, such as enhancing mitochondrial biogenesis, improving metabolic signaling pathways, and blunting pro-inflammatory pathways in mice fed a high fat, high calorie diet.</p> <p>Conclusion</p> <p>CNM of gene expression data from mice treated with SRT501 or SRT1720 in combination with supporting <it>in vitro </it>and <it>in vivo </it>data demonstrates that SRT501 and SRT1720 produce a signaling profile that mirrors CR, improves glucose and insulin homeostasis, and acts via SIRT1 activation <it>in vivo</it>. Taken together these results are encouraging regarding the use of small molecule activators of SIRT1 for therapeutic intervention into type 2 diabetes, a strategy which is currently being investigated in multiple clinical trials.</p

    Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (sirtuin) inhibitors

    No full text
    In a search for potent inhibitors of class III histone/protein deacetylases (sirtuins), a series of sirtinol analogues have been synthesized and the degree of inhibition was assessed in vitro using recombinant yeast Sir2, human SIRT1, and human SIRT2 and in vivo with a yeast phenotypic assay. Two analogues, namely, 3- and 4-[(2-hydroxy-1-naphthalenylmethylene)amino] -N-(l-phenylethyl)benzamide (i.e., in- and p-sirtinol), were 2- to 10-fold more potent than sirtinol against human SIRT1 and SIRT2 enzymes. In yeast in vivo assay, these two small molecules were as potent as sirtinol. Compounds lacking the 2-hydroxy group at the naphthalene moiety or bearing several modifications at the benzene 2'-position of the aniline portion (carbethoxy, carboxy, and cyano) were 1.3-13 times less potent than sirtinol, whereas the 2'carboxamido analogue was totally inactive. Both (R)- and (S)-sirtinol had similar inhibitory effects on the yeast and human enzymes, demonstrating no enantioselective inhibitory effect

    Discovery of Thieno[3,2‑<i>d</i>]pyrimidine-6-carboxamides as Potent Inhibitors of SIRT1, SIRT2, and SIRT3

    No full text
    The sirtuins SIRT1, SIRT2, and SIRT3 are NAD<sup>+</sup> dependent deacetylases that are considered potential targets for metabolic, inflammatory, oncologic, and neurodegenerative disorders. Encoded library technology (ELT) was used to affinity screen a 1.2 million heterocycle enriched library of DNA encoded small molecules, which identified pan-inhibitors of SIRT1/2/3 with nanomolar potency (e.g., <b>11c</b>: IC<sub>50</sub> = 3.6, 2.7, and 4.0 nM for SIRT1, SIRT2, and SIRT3, respectively). Subsequent SAR studies to improve physiochemical properties identified the potent drug like analogues <b>28</b> and <b>31</b>. Crystallographic studies of <b>11c</b>, <b>28</b>, and <b>31</b> bound in the SIRT3 active site revealed that the common carboxamide binds in the nicotinamide C-pocket and the aliphatic portions of the inhibitors extend through the substrate channel, explaining the observable SAR. These pan SIRT1/2/3 inhibitors, representing a novel chemotype, are significantly more potent than currently available inhibitors, which makes them valuable tools for sirtuin research

    Sirtuins — novel therapeutic targets to treat age-associated diseases

    No full text
    corecore